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 القطري  التوزيع دالة باستخدام شبكة هيدروليكي كهر لمشغل التفاضلي التكاملي التناسبي المتحكم معايرة

 3، محمد حمدان  3، معاذ بني سليم 2د رحمتحم،  2امر، خالد ع*1مختار ارحومة

 الكلمات المفتاحية 

 كهروهيدروليكي مشغل

 القطري  التوزيع دالة 

 .النظام تحديد 

 

 الملخص 

 النمذجة منهج اقتراح تم لذلك، (.EHA) صناعي كهروهيدروليكي مشغل نظام موضع في التحكم أداء تحسين إلى الدراسة هذه تهدف

 باستخدام EHA لـ رياض ي نموذج على الحصول  تم (.RBF) الشعاعية القاعدة دالة عبر مضبوطة PID تحكم لوحدة الفوقية

 للحصول  منفصل خطي نموذج في المخطط تنفيذ تم .MATLAB تطبيق باستخدام النموذج تقدير خلال من النظام تحديد تقنية

 .العملية للتجارب محاكاة إجراء وتم .التحكم وحدة كفاءة من للتحقق للنظام النقل دالة على

Introduction 
Hydraulic actuators have been adopted and are widely used in 

industry not only because of their high-power capability but 

also their good positioning capability and fast smooth 

response characteristics in various modern applications [1-3]. 

The electro-hydrostatic actuator (EHA) utilizes a pump 

driven directly by an electric motor to drive the hydraulic 

piston or motor.  It differs from the conventional hydraulic 

servo actuator by employing a motor controller that regulates 

both the speed and direction of the motor, in accordance with 

the actuator position sensor and rate command.  

EHA have been adopted across a wide range of applications 

such as robotics, steel and aluminum mill equipment, flight 

simulation, paper machines, electromagnetic marine 

engineering, and injection molding machines, among others.  

To achieve optimal performance of the EHA in terms of 

position, force, or pressure, it is essential to employ an 

appropriate controller to enhance their efficiency and 

effectiveness [4].  Numerous efforts have been made by 

researchers over the years to enhance the EHA controllers.  In 

general, controllers can be designed if the mathematical 

model of the system exists and all the parameters are known.   

The process may prove to be challenging if the system model 

and parameters are not known. In this scenario, System 

Identification (SID) can be used to determine the system 

model.  SID is the procedure that develops models of a 

dynamic system based on the input and output signals from 

the system.  The input and output data must show some of the 

dynamics of the process.  The parameters of the model will 

be adjusted until the output from the model is similar to the 

output of the real system.   

One of the beigest challenging in using SID that the system 

needs to be stable. Additionally, the output data generated 

from an unstable system fails to provide sufficient 

information or dynamics regarding the system's behavior. 

Feedback controllers are developed to stabilize the system 

before SID can take place.  There is several SID techniques 

that can be applied to estimate the EHA model in form of 

linear models, non-linear models and intelligent models. 

Linear model such as Auto-regressive Exogenous (ARX) 

model with PRBS signal as input signal [5]. Nonlinear model 
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such as observer canonical form using a modified Recursive 

Instrument Variable [6], and Hammerstein model which 

makes the assumption that the nonlinearities of the systems 

can be separated from the system dynamics [7]. Intelligent 

models such as neural networks have been successfully used 

in various fields, such as back-propagation applied in 

identification of EHA model [8].   In the last few years, 

neural networks have been developed in form online 

identification using Recurrent High Order Neural Networks 

method [9].  Another online identification of the systems 

parameters is based on recursive least square algorithm, with 

constant trace [10].  

The EHA controller can be developed using the PID 

controller strategy. PID controller has been one of the most 

sophisticated methods and frequently used in the industry due 

to its simple architecture, easy tuning, cheap and excellent 

performance [11,12].  

However, the conventional PID is difficult to determine the 

appropriate PID gains in case of nonlinear and unknown 

controlled plants.  Various modified forms of this control 

strategy have been developed to improve its performance 

such as: an adaptive/self-tuning PID controller [13,14], self-

tuning PID control structures [15-16], self tuning PID 

controller [17-18], and self-tuning predictive PID controller 

[19]. Though satisfactory performance can be obtained and 

the proposed controllers above provide better response. 

To overcome these deficiencies, intelligent control techniques 

have emerged as highly potentialmethods.  One of these 

novel intelligent theories includes well-known artificial 

neural network.  There are many successful commercial and 

industrial applications using neural network based controlling 

techniques [20].  In this project, the development of position 

control of electro hydraulic actuator by using a self tuning   

Radial Basis Function Neural Network (RBFNN) will be 

used to overcome appearance of nonlinearities and 

uncertainties in the system.  

Mathematical Model of Electro-hydraulic Servo 
System 
Electro-hydraulic servo system equipments involve servo 

valve, hydraulic cylinder and load attached at the end of the 

piston as shown in Figure 1. The hydraulic cylinder is 

double-acting hydraulic cylinder with single-rod piston. 

When difference between P1 and P2 exists, the hydraulic 

cylinder piston extends or compresses. 

The complete mathematical model of the system as shown in 

Figure 1 consists of the hydraulic cylinder dynamics 

including the load environment, and the servo-valve 

dynamics. It also describes behaviors of the electro-hydraulic 

servo system [4]. 

Fig.1: Electro-hydraulic servo system 

 

The mechanical subsystem dynamics of the piston are 

depending on the load environment. The dynamic equations 

is written as 

 ̇     (1) 

  ̇           

 ̇      ̇           

(2) 

The hydraulic actuating force, Fa and the hydraulic friction 

force, Ff are commonly derived in the dynamics of servo 

hydraulic system. The hydraulic actuating force Fa is a 

nonlinear function of the control input voltage, load 

environment, cylinder pressure, etc, and it can be represented 

as: 

        (3) 

Hence, equation (2) represents as 

  ̇             (4) 

In this model, 

         (5) 

The differential equations governing the dynamics of the 

actuator are given. Defining the load pressure to be the 

pressure across the actuator piston, the derivative of the load 

pressure PL, is given by the total load flow through the 

actuator divided by the fluid capacitance 

  

   

 ̇               (6) 

Using the equation for hydraulic fluid flow through an 

orifice, the relationship between spool valve displacement xv, 

and the load flow QL, is given 

 

Therefore, from (4) to , the hydraulic dynamics of the 

actuating force of the cylinder is given by  

 ̇          + 

 (  √
               

 
     ) 

(8) 

where ,         
     

  
,     

     

  
,    

   

  
 

Spool displacement dynamic equation for of the servo valve 

xv, is controlled by an input servo valve u. The corresponding 

relation can be simplified as  

 ̇  
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From equation (1) to (9), if the state variables are selected as 

               
               

 ,the state equations of 

the servo hydraulic systems may be written as 
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where,     is the displacement of the piston, 

   is the piston velocity and,  

    is an external disturbance  

    is the cross section area of a hydraulic cylinder,  

    is the cylinder differential pressure,  

   is the total actuator volume,  

      is the bulk modulus of hydraulic oil,  

   is the total leakage coefficient,  

    is discharge coefficient,  

 w is the spool valve area gradient, and  

ρ is the oil density 

Metamodeling Review 

Metamodeling or sometimes called as “Surrogate” have been 

successfully used in many fields  to provide  simpler model 

of the input and output function that approximates the 

relationship between system performances and controller 

parameters of a system. The set of data that required for each 

PID controller parameter that can fit the actual set of data will 

give the best results of approximation. Recently, as studied in 

[19], Metamodeling had been used to optimize various type 

of system, included the nonlinear system. The Metamodeling 

technique successfully used to optimize some of the systems 

such as the flexible robot manipulator; Cartesian coordinates 

control of hovercraft system, the fluid mixing system, and the 

cruise control system. Through these studying, they proved 

that the Metamodeling technique can optimize various types 

of controller parameters, for example, the PID controller and 

the fuzzy logic controller. 

Radial Basis Function  

In this study, a Radial Basis Function Neural Network (RBF 

NN) was used in this case as a metamodel to approximate the 

mapping of the controller gains. The architecture of the RBF 

NN is illustrated in Figure 2. 

 

Fig.2: Radial Basis Function Neural Network 

 

The network consists of three layers: an input layer, a hidden 

layer and an output layer. Here, R denotes the number of 

inputs while Q the number of outputs. Equation 11 is used to 

calculate the output of the RBF NN for Q = 1,  

       ∑      
  
                                                                                                                 (11) 

 

Where           is an input vector,       is a basis 

function,     denotes the Euclidean norm,     are the 

weights in the output layer, S1 is the number of neurons (and 

centers) in the hidden layer and           are the RBF 

centers in the input vector space. Equation 11 can also be 

written as: 

              (12) 

Where  

                                    
                     

(13) 

and 

                ….      (14) 

The output of the neuron in a hidden layer is a nonlinear 

function of the distance given by: 

      
   

  ⁄
 (15) 

Where      spread parameter of the RBF NN. For training, 

the least squares formula was used to find the second layer 

weights while the centers are set using the available data 

samples. 

RBF NN offer several advantages compared to the Multilayer 

Perceptrons. RBF NN has also been successfully used, as 

reported by [20]. Two of these advantages are they can be 

trained using fast 2 stages training algorithm without the need 

for time consuming non-linear optimization techniques and 

an ANN RBF possesses the property of ‘best approximation’. 

In Metamodeling, RBF NN has also been successfully used, 

as reported by [20]. 

Results 
Experimental setup  

An Industrial EHA system that is used in this project is made 

up of a single-rod hydraulic cylinder driven by a direct servo 

valve Bosch Rexroth 4WREE6, 40 lpm flow rate at 70 bars.  

The dimension of the hydraulic cylinder is 63/30/300 mm.  

Piston position is measured by using 300mm draw wire 

sensor which is Linear Variable Differential Transformer 

(LVDT) transducer. 100 bar pressure transducer is use to 

gauge the pressure from and into the cylinder.  International 

instrument Peripheral Component Interconnect (NI PCI 

6221) card is use as interface between EHA with 

MATLAB’S programs in PC tested. Figure 3 represents the 

experimental workbench where the measurements of input-

output were acquired for identification process. 

Motor

pump

Cylinder

Piston

Pressure

Transducer 2

Pressure

Transducer 1

Draw wire

Sensor

Servo

valve

DAQ Card

Load

  

Fig.3: Experimental set-up 
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The model of the hydraulic actuator system will be present as 

the goals of this study are to represent a mathematical model 

of Electro-Hydraulic Actuator (EHA) system using system 

identification technique. It is followed by designing suitable 

PID controller for the system in simulation and real-time 

mode. 

Model estimation  

The set of data for model estimation and validation are taken 

from an experimental works on the hydraulic actuator with 

multi frequency sine wave input. The input and output signals 

as shown in Figure 4. The length of data is 2000 and time 

sampling 0.05 second. The data was divided into two parts 

for estimation and validation. The first part of data from 1 to 

1001 used is for estimation to determine the model of the 

system and another part of data from 1001 to 2000 is applied 

to validate the model. All procedures to estimate and validate 

are done by using System Identification Toolbox in 

MATLAB. 

 

Fig.4: The input-output data of EHA system 

The discrete polynomial transfer function for the model can 

be derived by starting with the general expression below         

     
 {     }

 {     }

 
          

             

        
            

 

(16) 

         

Similarly, the discrete LTI transfer function shows that 

     
    

    

 
      

          
          

       
          

          
 

(17) 

 

Since the general equation to describe ARX model is 

                                            

    Where d is the time delay, m is number of zeroes, n is 

number of poles and e(t) is a white noise with zero mean. 

 

Hence, the transfer function is performed as  

      
    

    

  
                                   

                                  
 

(18) 

 

The model can be accepted based on the smallest values 

criteria of FPE and AIC, and good percentage best fit 

Loss function 0.0209026 and FPE 0.0211532. 

From the output model shown in Figure 4, the polynomials of 

the model ARX331 can be reached. The measured output is 

compared with the simulated output in order to validate the 

developed model. From the polynomials, the transfer function 

is derived and the rest of the response curves are analyzed. 

Figure 6 shows the output model curve the best fit percentage 

is 96.75% which means the agreement is very good.  The 

residuals graph in Figure.5 also revealed that the auto 

correlation and cross correlation of the input and output data 

are mostly within the range of confidence interval. Figure 7 

shows that all poles lies inside the unit circle. The model is 

marginally stable because one pole is on the unit circle. 

Because of all roots are inside the unit circle, this is called a 

minimum phase model Causality and stability issue have 

been addressed by the model. Hence, more in-depth analysis 

will be conducted in order to derive a relation between the 

input and output.   

 

Fig.5: The residuals graph 

 

 

Fig.6: The best fit graph of the estimated mode 

 

 
Fig.7: poles and zeroes plot for the model 
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Simulation and real-time results  

The approach that has been applied to using used Radial 

Basis Function Neural Network in the metamodeling 

approach. RBF ANN was used as the metamodel to 

approximate the relationship between system performances 

and controller parameters of a system.  

Before proceeding in finding the controller parameters, the 

stability of the system needs to be considered first.  This has 

been done by testing the data using SID technique and shown 

by unite circle earlier during this chapter.  It has been found 

out that the system is indeed stable and hence the control of 

the system should be possible.  The approach to optimize the 

controller parameters is summarized as follows:  

Step1 Define the input design space, D, which consists of a 

set of initial values of the controller parameters.   

Step2 Obtain the ISE for the output position for all the design 

space defined in 1.   

Step 3 Create the target data set, T’; which consists of the 

ISE for the output position.   

Step 4 Fit the RBF-NN using D and T’.   

Step 5 Evaluate the RBF-NN on a larger input space, D’.    
Step 6 Find the minimum of the RBF-NN output (estimated). 

The corresponding controller gains that minimized the RBF 

output will be the gains to be verified in actual model 

simulation.   

 Step 7 Repeat step 1 to 6 until the result of parameter gains 

is satisfactory.   

In this study, D and D’ are the sets of initial and large data of 

discrete values given in Table.1.  The parameters for the 

RBF-NN used to fit the data D is summarized as:  

• 30 RBF centers are used.  Centers are added one by one 

until the RBF NN   reaches an error goal of 0.1.  

• β=200.   

Figure 8 shows the simulation of the system with PID 

controller. The performance measure that has utilized in this 

study is the Integral Square Error (ISE), which is defined by: 

     ∫(          )
 
   

(19) 

 

 

Where yd is the desired output displacement (set point), 

where y is the actual output displacement. This criterion, 

although not very selective, has been used because of the ease 

of computing the integral both analytically and experimentally. 

Table 1 shows the input design space defined as D, and large 

input data space defined as D’, The D contains the initial set 

of data gives the error for the position parameters and also 

utilizes to train the RBF Neural Network. The large input 

space, D’ dependent  on the chosen of the initial input data, 

so each set of the initial input data should be defined properly 

in accordance to the suitability of the large input space, D’ 

for each model of the system. On other hand the input design 

space, D is defined with minimal number of input data, but 

with as much as possible data that matched the large input 

data space, D’. or at least double input design space, D. That 

is, the proper initial data will extract quickly the exact patent 

of the error of the large input data space, D’. Table1 shows 

the initial and large data sets for EHA system. 

Table 1: Initial and large data sets 

Initial Data Sets (D) 

      Kp {0.5, 0.015, …, 0.9} 

      Ki {0.05, 0.015, …, 0.07} 

      Kd {0.0001, 0.001, …, 0.01} 

Total number of data 

configurations 

 

            540 

Large Data Sets (D’) 

      Kp {0.55, 0.011, …, 0.97} 

      Ki {0.04, 0.011, …, 0.08} 

      Kd {0.0001, 0.001, …, 0.01} 

Total number of data 

configurations 

 

1560 

Fig.8: The simulation of the system  
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Once the training stage is done, the RBF-NN will 

automatically generate the error (ISE) simulation for large 

data space controller parameters sets, D’, which comprises 

of1560 discrete data.   

 

 

Table 2: represents the best gains of PID controller 

                          STEP INPUE 

Kp 0.709 

Ki 0.07 

Kd 0.0091 

                          SINUSOIDAL INPUT 

Kp 0.968 

Ki 0.04 

Kd 0.0091 

 

The block diagram of the system with PID controller has 

been presented in Figure. 8 and   the output response is 

illustrated by Figure 9 and 10.  These responses are obtained 

through simulation mode. Figure 11 presents the similar PID 

is inserted in the forward path of the system in real-time 

mode. Based on that, the response of the system with step 

input is revealed by Figure 12. 

 
Fig.9: Response of the system with PID controller with step input 

(simulation) 

 
Fig.10: Response of the system with PID controller with sine input 

(simulation) 

It can be noted that the response obtains the steady state 

conditions without overshot and with very fast rise time and 

settling time.  

From Table 4.2, it can be seen that the best PID gains are 

selected by using RBF neural network. Figure 4.6shows that 

PID controller was applied to simulation/SIMULINK with 

step input and sinusoidal input response respectively.     

According to Figure 9 and 10 the output response of the 

system with step and sinusoidal input are produced zero 

steady-state error with the input.  The output of the system 

tracked the input injected.  The similar PID with same 

parameters was inserted in forward path of real-time system.  

Figure 11 reveals the PID controller with real-time system.  

As depicted in Figure 12, the response obtains the steady 

state conditions without overshot with very fast rise time and 

settling time. 

Fig.12: Response of real-time PID controller with step input 

(experiment) 

  

 
Fig.13: Compare the output response between simulation and 

experiment 

Discussion 
From Table 1 it can be observed that the best PID gains are 

selected by using RBF neural network. Figure 8 shows that  

PID controller is applied to simulation/SIMULINK with step 

input and sinusoidal input response respectively. Based on   

Figure9, 10 the output response of the system with step and 

sinusoidal input are produced zero steady-state error with the 

input. The output of the system is tracked the input that given 

to it. The similar PID with same parameters is inserted in 

forward path of real-time system. Figure 11 illustrates the 

PID controller with real-time system. As shown in Figure 12 

the   response obtains the steady state condition without 

overshot with fast rise time and settling time. From the 

Figure 13, it can be observed that the output from real-time 

experiment is almost similar with the output achieved from 

simulation which produces zero steady-state error and very 

fast response time.  It indicates that the RBF-NN has 

capability to give the best values of Kp, Ki and Kd of the PID 

controller.  Regarding to results it can involve acceptable and 

improve the performance of EHA system. A slight different 

between input and output happened because the EHA system 

which is nonlinear model is modeled in linear model and 

some nonlinearity and uncertainties characteristic are ignored. 
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Fig.11: Real-time PID controller 

 

Conclusion  
System identification was employed to estimate unknown 

parameters from Electro Hydraulic plant and was tested to 

obtain a linear discrete model of the hydraulic system. The 

ARX Model structure in Matlab toolbox was used to obtain 

the transfer function of the system. The proposed of auto 

tuning conventional PID controller using neural network is 

applied to control the piston position of a hydraulic cylinder 

in the system. The Radial basic Function neural network 

Metamodeling was chosen to optimize the value of Kp, Ki 

and Kd of the PID controller, because this method offers 

several advantages as compared to the Multilayer 

Perceptrons. Two of these advantages are; they can be trained 

using fast 2 stages training algorithm without the need for 

time consuming non-linear optimization techniques and, an 

ANN RBF possesses the property of ‘best approximation. 

From the results it can be seen the outputs from real-time 

experiment is almost similar with the output attained from 

simulation which produce zero steady-state error and fast 

response time. 
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