
Wadi Alshatti University Journal of

Pure and Applied Sciences

جامعة وادي الشاطئ ةمجل

لعلوم البحتة والتطبيقيةل

Volume 3, No. 2, July-December 2025 Online ISSN: 3006-0877 2025ديسمبر -، يوليو1، الاصدار 3المجلد

RESEARCH ARTICLE COMPUTER SCIENCE

*Corresponding author

https://doi.org/10.63318/waujpasv3i2_03

A Comparative Analysis of VxWorks OS and Windows CE in Embedded Real-Time Applications

Saleh Abuazoum
 1,*

1Electrical and Electronic Engineering Department, Faculty of Engineering, Sebha University, Sebha, Libya

 في التطبيقات المضمنة في الزمن الحقيقي Windows CEو VxWorks تحليل مقارن بين نظام تشغيل

صالح أبوعزوم
 1*،

 الملخص المفتاحيةالكلمات

 أنظمة الزمن الحقيقي) الفعلي (
 VxWorksنظام التشغيل
 Windows CEنظام التشغيل

 الأنظمة المضمنة

دورًا محوريًا في التطبيقات الحرجة مثل الفضاء، الأتمتة الصناعية، (RTOS) (الفعليالحقيقي) تلعب أنظمة التشغيل في الوقت

لتعدد استخداماتهما وقدراتهما Windows CEو VxWorks المنصات واسعة الاستخدام، تبرزوالرعاية الصحية. ومن بين

 مقارنًا بين
ً

، مع التركيز على بنيتهما، آليات الجدولة، Windows CEو VxWorks في الوقت الفعلي. تقدم هذه الورقة تحليلً

ه الورقة الميزات الأساسية لكل نظام تشغيل، مقاييس الأداء في . تدرس هذ) الزمن الحقيقي (وملًءمتهما للتطبيقات في الوقت الفعلي

، وتنفيذ التطبيقات الخاصة باستخدام بيانات من معايير موثقة ودراسات حالة. يكشف التحليل) الزمن الحقيقي (الوقت الفعلي

مرونة أكبر Windows CE يتفوق في بيئات الوقت الفعلي الصارمة بسبب جدولته الحتمية، بينما يوفر VxWorks أن

وقدرات تكامل لمهام الوقت الفعلي اللينة. توفر هذه الدراسة رؤى قيمة للمطورين والمهندسين لاختيار نظام التشغيل في الوقت

 .الفعلي المناسب بناءً على متطلبات التطبيق المحددة

Introduction
The rapid advancement of technology has led to the

proliferation of real-time systems in critical applications,

ranging from aerospace and medical devices to industrial

automation and consumer electronics. Real-time operating

systems (RTOS) form the backbone of these systems by

managing hardware resources and ensuring timely and

deterministic execution of tasks. Among the many RTOS

available today, VxWorks and Windows CE have garnered

significant attention due to their proven capabilities in

handling diverse real-time requirements.

VxWorks, developed by Wind River Systems, is widely

recognized for its high-performance capabilities and robust

support for hard real-time systems. It has been a preferred

choice in mission-critical domains such as avionics, space

exploration, and industrial control systems. On the other

hand, Windows CE, a Microsoft product, offers a versatile

platform designed for embedded applications, providing

integration with the broader Windows ecosystem while

supporting soft real-time requirements in consumer

electronics and industrial applications [1].

Despite their widespread use, there is a lack of

comprehensive studies comparing these two RTOS across

key performance and design parameters. This paper seeks to

address this gap by analysing the architectures, scheduling

mechanisms, and real-time capabilities of VxWorks and

Windows CE. Additionally, the paper evaluates their

suitability for various real-time applications, supported by

examples from real-world implementations.

The remainder of this paper is structured as follows: Section

2 provides a background on RTOS and reviews related work.

Section 3 delves into the technical features of VxWorks and

Windows CE, followed by a comparative analysis in Section

4. Section 5 discusses challenges and limitations, while

Section 6 concludes with insights and future directions.

Background and Related Work

Background on Real-Time Operating Systems

Real-time systems are designed to perform specific tasks

ARTICLE HISTORY A B S T R A C T

Received 04 January 2025

Revised 05 April 2025

Accepted 07 May 2025

Online 11 May 2025

KEYWORDS

Real-time operating systems (RTOS) play a pivotal role in critical applications such as aerospace,

industrial automation, and healthcare. Among the widely used platforms, VxWorks and Windows

CE stand out for their versatility and real-time capabilities. This paper provides a comparative

analysis of VxWorks and Windows CE, focusing on their architectures, scheduling mechanisms,

and suitability for real-time applications. The study examines each operating system’s core

features, real-time performance metrics, and application-specific implementations using data from

documented benchmarks and case studies. The analysis reveals that VxWorks excels in hard real-

time environments due to its deterministic scheduling, while Windows CE offers greater flexibility

and integration capabilities for soft real-time tasks. This study provides valuable insights for

developers and engineers in selecting the appropriate RTOS based on application-specific

requirements.

Real Time Systems;

VxWorks;

Windows CE;

Embedded System.

https://orcid.org/0009-0002-5243-0654
mailto:sal.abuazoum@sebhau.edu.ly

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 10

within strict timing constraints, making them essential in

applications where delays could lead to system failure or

significant performance degradation. Real-time operating

systems (RTOS) are specialized software platforms that

provide the necessary scheduling, resource management, and

timing mechanisms to ensure deterministic behaviour.

Two primary categories of real-time systems are hard real-

time and soft real-time systems. Hard real-time systems

require tasks to be executed within strict deadlines, with

failure being unacceptable (e.g., aerospace or medical

devices). In contrast, soft real-time systems tolerate

occasional deadline misses but strive to maintain acceptable

performance (e.g., video streaming or consumer

electronics).[1]

The field of embedded real-time systems has seen significant

advancements over the years, with multiple real-time

operating systems (RTOS) being developed to cater to

diverse application requirements. Below is an overview of the

most prominent RTOS in the industry, highlighting their

features, use cases, and relevance to embedded real-time

applications.

1. FreeRTOS: FreeRTOS is a widely adopted open-source

RTOS designed for microcontrollers and small embedded

systems. Its lightweight and easy-to-use architecture make

it a popular choice for developers working on resource-

constrained devices. FreeRTOS supports a wide range of

hardware architectures and is often used in IoT devices

and low-power applications. However, its simplicity may

limit its suitability for more complex, high-reliability

systems.[32]

2. QNX: QNX is a commercial RTOS known for its

microkernel architecture, which enhances its performance

and reliability. It is widely used in automotive and

industrial applications, where real-time responsiveness

and system stability are paramount. QNX’s modular

design allows for customization, but its licensing costs

and complexity may limit its adoption in smaller-scale

projects.[33]

3. RTEMS (Real-Time Executive for Multiprocessor

Systems): RTEMS is an open-source RTOS designed for

embedded systems, particularly those requiring multi-

threading and real-time scheduling. Its support for

multiprocessor systems makes it suitable for applications

in aerospace and scientific research. While RTEMS offers

a rich feature set, its learning curve and documentation

challenges can be barriers for new users.[34]

4. Micrium: Micrium is a commercial RTOS tailored for

resource-constrained devices. It is known for its high

performance, modularity, and extensive library support.

Micrium is often used in consumer electronics and

medical devices, where efficiency and reliability are

critical. However, its commercial licensing may not be

feasible for all developers.[35]

5. ThreadX: ThreadX, developed by Express Logic (now

part of Microsoft), is a compact and efficient RTOS

designed for embedded systems. Its fast context switching

and user-friendly API make it a popular choice for real-

time applications. ThreadX is widely used in consumer

electronics and industrial automation, but its proprietary

nature may limit its accessibility.[36]

6. Nucleus: Nucleus, a scalable RTOS from Mentor

Graphics, is designed for embedded systems requiring

real-time performance and modularity. It offers

comprehensive middleware support, making it suitable for

automotive and telecommunications applications.

However, its commercial licensing and complexity may

deter smaller projects.[37]

7. ChibiOS/RT: ChibiOS/RT is an open-source RTOS with

a focus on embedded systems. Its compact size, high

performance, and rich feature set make it a viable option

for developers seeking a balance between functionality

and resource usage. ChibiOS/RT is often used in robotics

and automation, but its community support may not

match that of larger projects like FreeRTOS.[38]

8. Zephyr: Zephyr is an open-source RTOS designed for IoT

devices. Its modular and scalable architecture supports a

wide range of hardware, making it a versatile choice for

connected devices. Zephyr’s growing community and

active development make it a promising option for future

IoT applications, though it may lack the maturity of more

established RTOS.[39]

Research Gap and Contribution

While numerous RTOS options are available, each with its

own strengths and limitations, there is a lack of

comprehensive comparative studies that evaluate their

performance in embedded real-time applications. Existing

research often focuses on individual RTOS or narrow use

cases, leaving a gap in understanding how systems like

VxWorks and Windows CE compare in terms of real-time

performance, scalability, and reliability. This paper addresses

this gap by providing a detailed comparative analysis of

VxWorks and Windows CE, offering insights into their

suitability for various embedded real-time applications.

Overview of VxWorks and Windows CE

VxWorks, developed by Wind River Systems, is a highly

reliable RTOS tailored for hard real-time applications. Its

microkernel-based architecture, preemptive scheduling, and

support for advanced real-time features make it ideal for

mission-critical systems, including space exploration (e.g.,

Mars rovers) and industrial robotics. VxWorks has been a

benchmark for RTOS performance due to its deterministic

execution and scalability.[10]

Windows CE, introduced by Microsoft, caters to the

embedded systems market, focusing on soft real-time and

general-purpose applications. Its modular design, integration

with the Windows ecosystem, and graphical capabilities

make it a popular choice for devices such as handheld

computers, automotive systems, and industrial equipment.

Despite its primary focus on soft real-time tasks, Windows

CE provides adequate support for applications with moderate

timing requirements.[22]

Related Work

Several studies have explored the characteristics and

performance of RTOS in various domains. For instance, [1]

conducted a survey of RTOS architectures, emphasizing the

trade-offs between monolithic and microkernel designs. Their

findings highlighted the superior scalability of microkernel-

based systems, such as VxWorks, over monolithic systems.

In another study, [2] evaluated the scheduling algorithms

used by popular RTOS, comparing rate-monotonic, earliest-

deadline-first, and hybrid scheduling approaches. Their

results underscored the significance of algorithm selection

based on application-specific requirements.

Comparative analyses of VxWorks and Windows CE have

primarily focused on isolated aspects such as power

management [3] or user experience [4]. However, a holistic

comparison covering architectural design, scheduling, and

application suitability remains scarce. This paper aims to

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 11

bridge this gap by providing a comprehensive analysis of

VxWorks and Windows CE, drawing insights from existing

literature and real-world case studies.

Technical Analysis

VxWorks Architecture

VxWorks is a microkernel-based RTOS designed for real-

time, safety-critical applications. The microkernel

architecture ensures minimal overhead by separating core

system services (such as scheduling, interrupt handling, and

inter-process communication) from application-specific

components. This modular design enhances system

scalability and reliability, as critical real-time tasks can be

isolated from less time-sensitive operations.

1. Kernel-Design: VxWorks employs a pre-emptive,

priority-based scheduler that ensures real-time tasks are

given CPU time based on priority and timing constraints.

The kernel also supports a priority inheritance protocol to

avoid priority inversion, a common issue in real-time

systems.[3,5]

2. Real-Time-Scheduling: VxWorks offers several real-time

scheduling policies, including rate-monotonic and

earliest-deadline-first (EDF) algorithms. These allow the

system to meet hard real-time constraints by ensuring that

critical tasks are executed within their deadlines.

VxWorks’ scheduler is highly deterministic, making it

ideal for applications where timing is critical, such as

aerospace and defense.[5,10]

3. Inter-Process Communication (IPC): VxWorks provides

efficient IPC mechanisms such as message queues,

semaphores, and shared memory, enabling

communication between real-time tasks. These

mechanisms are designed to minimize latency and ensure

predictable behavior, a crucial requirement in real-time

environments.[5]

4. Interrupt Handling: VxWorks supports interrupt latency

minimization, a critical feature for hard real-time systems.

The system allows direct handling of interrupts with low

latency, which ensures that time-sensitive tasks are

executed without delay. [5,10]

Windows CE Architecture

Windows CE is a modular, multitasking operating system

designed primarily for embedded systems. Unlike VxWorks,

Windows CE is not strictly a microkernel OS; it uses a hybrid

kernel that integrates the advantages of both monolithic and

microkernel designs. Its flexibility and extensibility make it a

popular choice for applications requiring a balance between

real-time and general-purpose computing.

1. Kernel-Design: The Windows CE kernel offers

preemptive multitasking, allowing multiple applications

to run concurrently while providing real-time scheduling

features for time-sensitive tasks. While the kernel’s

design allows for better integration with Windows-based

systems, it may introduce non-deterministic behavior in

certain scenarios, particularly in systems with heavy

general-purpose workloads.[22]

2. Real-Time-Scheduling: Windows CE primarily supports

time-slice scheduling, which divides CPU time into

intervals for each running process. While this approach is

suitable for many embedded applications, it is not

inherently deterministic. To accommodate real-time tasks,

developers must implement priority-based scheduling or

use third-party real-time extensions. The real-time

extension (RTE) in Windows CE allows for soft real-time

capabilities but may not meet the stringent requirements

of hard real-time applications.[24, 25]

3. Inter-Process Communication (IPC): Windows CE

provides standard IPC mechanisms, including named

pipes, mail slots, and event objects. These are designed to

facilitate communication between processes in embedded

systems, though they can introduce latency compared to

the more streamlined IPC mechanisms in

VxWorks.[23,24]

4. Interrupt Handling: Windows CE supports interrupt

handling, but its interrupt latency is generally higher than

VxWorks, which can impact time-sensitive operations.

The system allows developers to define interrupt

priorities, but the inherent complexity of its kernel

architecture means that interrupt handling is not as

deterministic as in VxWorks.[25,26,27]

Key Comparison

Table 1 provides a structured comparison between the two

systems, VxWorks and Windows CE, focusing on their

architectural and performance characteristics for real-time

applications. It highlights critical differences in kernel

design, scheduling mechanisms, interprocess communication

(IPC), interrupt handling, and real-time capabilities.

Suitability for Real-Time Applications

 VxWorks is well-suited for hard real-time applications

where strict deadlines must be met, such as in aerospace,

defense, and medical systems. Its low interrupt latency,

deterministic scheduling, and high reliability make it ideal

for critical systems that cannot tolerate failure or delay.

[10].

 Windows CE, while capable of handling soft real-time

requirements, is better suited for applications that require

a balance between real-time and general-purpose

functionality. It is widely used in consumer electronics,

automotive systems, and industrial automation, where

time constraints are important but not as stringent as those

in hard real-time systems [23].

Table 1: Comparison between VxWorks and Windows CE features

Feature VxWorks Windows CE

Kernel Type Microkernel Hybrid kernel (monolithic and microkernel)

Scheduling Preemptive, priority-based (hard real-time) Time-slice, preemptive (soft real-time)

IPC Mechanisms Message queues, semaphores, shared memory Named pipes, mail slots, event objects

Interrupt

Handling
Low-latency, high-priority interrupts Higher latency, priority-defined interrupts

Real-Time

Support
Hard real-time (deterministic) Soft real-time (through RTE extensions)

Scalability Highly scalable for critical applications Scalable, but less efficient for hard real-time tasks

Flexibility
Optimized for dedicated, mission-critical

systems

Flexible and suitable for embedded systems with moderate real-time

requirements

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 12

Case Studies and applications

VxWorks in Aerospace and Defense

One of the most well-known applications of VxWorks is in the

aerospace and defense industry. VxWorks is used in mission-

critical systems where failure to meet deadlines can result in

catastrophic consequences. Its deterministic behavior and high

reliability make it an ideal choice for such applications.

1. NASA’s Mars Rovers: VxWorks has been used extensively

by NASA in the operation of the Mars rovers, including the

Spirit, Opportunity, and Curiosity rovers. These rovers rely

on VxWorks for their onboard operating systems to manage

real-time communication with Earth, control robotic

movements, and process scientific data. The real-time

scheduling capabilities of VxWorks ensure that the rover's

actions are performed without delay, even in the harsh and

unpredictable environment of Mars. VxWorks’ ability to

meet hard real-time constraints is essential for the success

of these missions.[5]

2. Military Systems: VxWorks is also a trusted platform for

many military applications, including Unmanned Aerial

Vehicles (UAVs) and missile guidance systems. These

systems require the highest levels of reliability and

precision, which VxWorks provides through its low-latency

interrupt handling and preemptive scheduling. In these

environments, any failure to meet timing constraints could

result in mission failure, making VxWorks a preferred

choice for these applications.[10]

Windows CE in Consumer Electronics and Industrial

Automation

While VxWorks dominates in hard real-time applications,

Windows CE is widely used in consumer electronics and

industrial automation, where the timing constraints are often

softer and more flexible.

1. Automotive Systems: Windows CE is commonly used in

in-car infotainment systems, where it manages multimedia

and navigation features. For example, the Ford SYNC

system, which allows drivers to interact with their vehicles

using voice commands, utilizes Windows CE to handle

both real-time requirements (such as processing voice

commands) and general-purpose tasks (such as running

media applications). The system’s flexibility, integration

with other Windows-based applications, and ease of use

make it a strong contender in the automotive industry,

where real-time performance is necessary but not as strict

as in safety-critical systems.[16,24]

2. Industrial Control Systems: In industrial automation,

Windows CE is employed in Programmable Logic

Controllers (PLCs) and Human-Machine Interfaces (HMIs).

These systems benefit from Windows CE's ability to

support soft real-time capabilities, allowing them to process

data from industrial sensors and control machinery while

also providing an interface for operators. For instance, in

manufacturing plants, Windows CE-based systems are used

to control assembly lines, process data, and provide real-

time feedback to operators, all while ensuring a balance

between real-time processing and user interaction.[24]

3. Medical Devices: Windows CE has also found a place in

medical devices, such as patient monitoring systems and

diagnostic equipment. These devices often require real-time

data processing to monitor patient vitals, such as heart rate

or blood pressure, and to trigger alarms if abnormal

conditions are detected. Windows CE provides the

necessary flexibility to integrate with other medical systems

and software, while also supporting soft real-time

capabilities to meet the performance demands of these

applications [26].

Comparison of Use Cases:

Table 2 provides a side-by-side comparison

of VxWorks and Windows CE across critical industries,

highlighting their suitability for real-time embedded

applications based on performance, reliability, and use-case

requirements. By examining their adoption in sectors

like aerospace, military, automotive, industrial automation, and

medical devices, this analysis reveals how each operating

system’s design philosophy aligns with domain-specific

demands.

Table 2: Comparison between VxWorks and Windows CE in Industry

applications.

Industry/Appli

cation
VxWorks Windows CE

Aerospace

(Mars Rovers)

Critical real-time

control and

communication,

requiring hard real-

time capabilities.

Not suitable due to the

need for hard real-time

guarantees.

Military

Systems

(UAVs)

High reliability and

low latency for

mission-critical

applications.

Typically, not used due to

lack of deterministic

scheduling.

Automotive

(Ford SYNC)
N/A

Handles soft real-time

tasks like multimedia and

voice commands while

supporting general-

purpose features.

Industrial

Automation

(PLC)

N/A

Manages control systems

and real-time data

processing with flexibility

and ease of integration.

Medical

Devices

(Patient

Monitoring)

N/A

Soft real-time processing

of patient data with

seamless integration into

hospital networks.

Conclusion of Case Studies

The case studies demonstrate the strengths of both VxWorks

and Windows CE in real-world applications. VxWorks is

clearly the choice for hard real-time applications where

meeting strict deadlines is non-negotiable, such as in aerospace

and defense systems. On the other hand, Windows CE shines in

environments where soft real-time requirements are sufficient,

such as in automotive systems, industrial control, and medical

devices. Each system excels in its respective domain, and the

choice between them largely depends on the specific real-time

demands of the application at hand.

Challenges and limitations
Challenges with VxWorks

While VxWorks is a highly robust RTOS for hard real-time

applications, it is not without its challenges and limitations.

1. Complexity in System Configuration and Integration: The

modular nature of VxWorks offers great flexibility, but this

can make system configuration and integration more

complex. Developers often need to carefully select and

configure the appropriate components, such as the kernel,

device drivers, and real-time features, to ensure optimal

performance. This process can be time-consuming and may

require deep expertise in the platform.

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 13

2. High Cost of Licensing: VxWorks is a commercial RTOS,

and its licensing costs can be quite high, particularly for

small to medium-sized projects. This can be a significant

barrier for organizations with limited budgets, especially

when compared to open-source or less expensive embedded

operating systems. The cost structure may also limit the

adoption of VxWorks in industries that do not require hard

real-time guarantees.

3. Limited Support for General-Purpose Applications: While

VxWorks excels in hard real-time environments, it lacks the

same level of support for general-purpose applications as

other more widely used operating systems. It is not as well-

suited for applications that require heavy multitasking,

complex graphical user interfaces (GUIs), or integration

with a wide range of third-party software libraries and

frameworks.

4. Longer Development Time: Due to its specialized nature

and focus on real-time performance, developing and

debugging applications on VxWorks can take longer

compared to more common platforms like Windows or

Linux. The need for custom configuration and optimization

can lead to increased development cycles, which can be a

limitation in time-sensitive projects.

Challenges with Windows CE

Windows CE, while versatile and widely used, has its own set

of limitations, especially when dealing with more stringent

real-time requirements.

1. Lack of True Deterministic Real-Time Support: While

Windows CE does support real-time extensions (RTE), it

does not provide the same level of deterministic, hard real-

time support that VxWorks offers. The kernel’s hybrid

design, while efficient for general-purpose tasks, introduces

unpredictability in the execution of time-sensitive tasks. For

systems where absolute deadline guarantees are critical,

such as in aerospace or medical applications, Windows CE

may not be suitable.

2. Higher Interrupt Latency: Windows CE is known for higher

interrupt latency compared to VxWorks. In time-critical

applications, such as those in industrial control or

automotive safety, even slight delays in interrupt handling

can lead to unacceptable performance degradation or failure

to meet timing constraints. The higher interrupt latency can

significantly impact the real-time performance of

applications that require immediate responses to external

events.

3. Limited Support for Multi-Core Processing: Although

Windows CE supports multi-core processors, it does not

fully optimize parallel processing in the way other modern

operating systems like Windows or Linux do. This can limit

the scalability and performance of applications requiring

extensive parallel computation, such as in advanced

robotics or high-performance computing in embedded

systems.

4. Deprecation and Limited Updates: Windows CE has been

largely phased out in favor of more modern operating

systems like Windows Embedded Compact and Windows

10 IoT Core. As a result, developers working with

Windows CE may face challenges related to limited support

and fewer updates. Many newer hardware devices and

technologies are not fully compatible with Windows CE,

leading to potential integration challenges for new projects.

5. Security-Concerns: As an embedded OS designed for

relatively less critical applications, Windows CE does not

provide the same level of security features found in full-

fledged operating systems. Security is often a secondary

concern in the design of Windows CE, which may pose

risks for applications in fields where data integrity and

protection are paramount, such as in healthcare or financial

systems.

Comparison of Challenges

Table 3 compares VxWorks and Windows CE across critical

embedded system challenges. VxWorks offers superior hard

real-time performance with low interrupt latency and strong

security, but requires complex configuration and carries high

licensing costs. Windows CE provides easier integration and

lower costs, but lacks deterministic real-time capabilities and

has higher interrupt latency. While VxWorks excels in

mission-critical applications, Windows CE suits general-

purpose embedded systems with softer timing requirements.

Both face limitations in multi-core support, though VxWorks

remains the choice for safety-critical environments.

Table 3: Challenges in VxWorks and Windows CE.

Challenge VxWorks Windows CE

System

Configuration

Complex system

configuration required due

to modular architecture.

Easier integration but

lacks real-time

determinism.

Licensing Cost High licensing costs.

Relatively low cost but

limited real-time

capabilities.

Real-Time

Support

Excellent for hard real-

time but less suited for

soft real-time.

Soft real-time

capabilities, but lacks

hard real-time

determinism.

Development

Time

Longer development

cycles due to complexity.

Faster development for

general-purpose

applications.

Interrupt

Latency

Low interrupt latency

(ideal for hard real-time).

Higher interrupt latency

can affect real-time

performance.

Security
Strong security features

for critical systems.

Limited security features,

not ideal for sensitive

data applications.

Multi-Core

Support

Limited multi-core

processing.

Limited support and

optimization for multi-

core processors.

Both VxWorks and Windows CE have unique strengths and

limitations, which make them suitable for different application

domains. VxWorks is ideal for hard real-time systems in

industries such as aerospace and defense, but its complexity

and high licensing cost may limit its adoption in smaller or

budget-constrained projects. On the other hand, Windows CE

offers flexibility and cost-effectiveness for embedded systems

with less stringent real-time requirements, but its lack of true

deterministic real-time support and higher interrupt latency

make it unsuitable for mission-critical applications.

Understanding these challenges is key to selecting the right

operating system for a given application, and this paper has

highlighted the trade-offs developers must consider when

choosing between VxWorks and Windows CE for real-time

systems.

Conclusion
In this paper, we have provided a detailed comparison between

VxWorks and Windows CE, two widely used operating

systems in the realm of real-time applications. Both systems

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 14

are designed to meet the demands of time-sensitive

environments, but their strengths and limitations make them

suitable for different use cases.

VxWorks excels in hard real-time applications, offering

deterministic scheduling, low interrupt latency, and high

reliability. Its microkernel architecture and robust support for

critical systems have made it the preferred choice for industries

such as aerospace, defense, and medical devices, where

meeting strict timing constraints is paramount. However, its

complex configuration, high licensing costs, and longer

development times can pose challenges, particularly for smaller

projects or those requiring general-purpose functionality.

On the other hand, Windows CE provides a more flexible and

cost-effective platform, ideal for soft real-time applications that

demand a balance between real-time processing and general-

purpose computing. It is commonly used in automotive

systems, consumer electronics, and industrial automation,

where timing constraints are important but not as stringent.

Despite its advantages in these domains, Windows CE lacks

true deterministic real-time support and suffers from higher

interrupt latency and limited multi-core optimization, which

make it less suitable for hard real-time tasks.

Ultimately, the choice between VxWorks and Windows CE

depends on the specific requirements of the application. For

mission-critical systems where meeting deadlines is non-

negotiable, VxWorks remains the top choice. However, for

applications that require a more versatile platform with

moderate real-time requirements, Windows CE offers

significant benefits in terms of cost, development speed, and

integration with Windows ecosystems.

Future research could explore hybrid approaches that combine

the strengths of both operating systems, allowing developers to

tailor solutions for even more diverse and complex real-time

applications. By understanding the unique features and trade-

offs of these operating systems, engineers and system designers

can make more informed decisions and optimize the

performance of their real-time systems.

Author Contributions: “It's a single-author article."

Funding: "This research received no external funding."

Data Availability Statement: “The data are available at

request.”

Conflicts of Interest: “The authors declare no conflict of

interest.”

References
[1] K. Pothuganti, A. Haile, and S. Pothuganti, "A comparative study

of real-time operating systems for embedded systems," Int. J.

Innov. Res. Comput. Commun. Eng., vol. 4, no. 6, Jun. 2016.

Available Online : 10.15680/IJIRCCE.2016.0406224.

[2] A. Barbalace; A. Luchetta; G. Manduchi, "Performance

comparison of VxWorks, Linux, RTAI, and Xenomai in a hard

real-time application," IEEE Trans. Nucl. Sci., vol. 55, no. 1, pp.

435-439, 2008. https://doi.org/10.1109/TNS.2007.905231

[3] J. Yu, "Design and Implementation of VxWorks Compatibility

Library Based on Xenomai," in Proc. 6th Int. Conf.

Communications, Information System and Computer

Engineering (CISCE), Guangzhou, China, May 10-12, 2024.

https://doi.org/10.1109/CISCE62493.2024.10653438.

[4] L. Tan and J. Song, "Microkernel vs. Monolithic Kernel: Case

Studies of VxWorks and Windows CE," ACM Trans. Embed.

Comput. Syst., vol. 17, no. 3, pp. 1-25, 2018. https://doi.org/

10.1145/3273905

[5] L. Shirui, G. Haifeng, and Q. Yalei, "Application of VxWorks

interrupt affinity based on MPIC," in Proc. 2nd IEEE Int. Conf.

Computer and Communications (ICCC), Chengdu, China, Oct.

14-17, 2016. https://doi.org/10.1109/CompComm.2016.

7925074.

[6] M. Rajesh and B. Sreevidya, "Vulnerability analysis of real-time

operating systems for wireless sensor networks," in Proc. 3rd

Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), 2020, pp.

449-460, https://doi.org/10.1007/978-981-15-1483-8_38

[7] G. Cao, K. Song, and J. Yang, "Adaptive low power design based

on VxWorks kernel scheduler and hook mechanism," 2nd IITA

Int. Conf. Geoscience and Remote Sensing (IITA-GRS),

Qingdao, China, Aug. 28-31, 2010. https://doi.org/10.1109/

IITA-GRS.2010.5603226.

[8] W. Ruan and Z. Zhai, "Kernel-level design to support partitioning

and hierarchical real-time scheduling of ARINC 653 for

VxWorks," in Proc. IEEE 12th Int. Conf. Dependable,

Autonomic and Secure Computing (DASC), Dalian, China, Aug.

24-27, 2014. https://doi.org/10.1109/DASC.2014.76.

[9] O Hahm and E Baccelli and H Petersen and N Tsiftes,

"Operating systems for low-end devices in the Internet of

Things: A survey," IEEE Internet Things J., vol. 3, no. 5, pp.

720–734, Oct. 2016. https://doi.org/10.1109/JIOT.2015.

2505901.

[10] G. Wilson, "The Decline of Windows CE and Rise of VxWorks in

Modern Embedded Systems," Embed. Comput. Des., 2023.

[Online]. Available: https://www.embedded.com/windows-ce-

vs-vxworks-2023

[11] L.-P. Chen and Z. Xu, "The design and implementation of on-

board data handling system based on VxWorks," Wireless

Commun. Netw., 2016. https://doi.org/10.1142/9789814733663_

0054.

[12] K. Soundararajan and R. W. Brennan, "Design patterns for real-

time distributed control system benchmarking," Robot. Comput.-

Integr. Manuf., vol. 24, no. 5, pp. 606–615, Oct. 2008.

https://doi.org/10.1016/j.rcim.2007.10.002

[13] Y. Tao and K. Song, "Design of VxWorks-based software

architecture for space optical remote sensor," in Proc. IEEE Int.

Conf. Electron. Mech. Eng. Inf. Technol. (EMEIT), vol. 4, 2011,

pp. 1931–1934. https://doi.org/10.1109/EMEIT.2011.6023222

[14] L. Zoltan, "Memory allocation in VxWorks 6.0," Wind River

Syst., Alameda, CA, USA, Tech. Rep., pp. 2–3, 2005.

Available: https://citeseerx.ist.psu.edu

[15] H. Zhou, W. Zhang, Y. Zhang, R. Ding, and F. Ba, "Intelligent

SpaceWire bus controller driver design and implementation

based on VxWorks," in Proc. Int. Conf. Multimedia Technology

(ICMT), Hangzhou, China, Jul. 26-28, 2011.

https://doi.org/10.1109/ICMT.2011.6002064.

[16] A.J. Kornecki and J. Zalewski and D. Eyassu , "Learning real-

time programming concepts through VxWorks lab

experiments," in Proc. IEEE Conf. Softw. Eng. Educ. (CSEE),

Austin, TX, USA, 2000. https://doi.org/10.1109/CSEE.2000.

827056.

[17] JY. Gao and D. Li, "Implementation of C Program Invocation in

PLC Based on VxWorks Operating System," in Proc. 11th Int.

Forum Electrical Engineering and Automation (IFEEA),

Shenzhen, China, Nov. 22-24, 2024, https://doi.org/10.1109/

IFEEA64237.2024.10878540.

[18] K. K. G. Buquerin, "Security evaluation for the real-time

operating system VxWorks 7 for avionic systems," Bachelor

thesis, Fac. Elect. Eng. Comput. Sci., Tech. Hochsch. Ingolstadt,

Ingolstadt, Germany, 2018. [Online]. Available: https://kmyr.de

[19] R. Li, "Computer embedded automatic test system based on

VxWorks," Int. J. Embed. Syst., vol. 14, no. 3, pp. 183–192,

https://d1wqtxts1xzle7.cloudfront.net/64394487/224_44_A_comparative-libre.pdf?1599673912=&response-content-disposition=inline%3B+filename%3DA_Comparative_Study_of_Real_Time_Operati.pdf&Expires=1744892522&Signature=dL25NUJVhEqaL2RL4IUN0b2RepjVd06wlGvYI7pQbizWaJzulxJYF-p9-0ZvZYDI0CAxaQNuk47s8G-i-Yr0OoeLwCVFPFtTHbxS17DjGvWSU65F20BN02woydh03wdafHUu9FYlf4iGB6N5K7AbB-K3VTYsinGQVt2jhdlG14WhLV-Y1uz0g3RjWjdWBZr5oHOEW6lhohRjdynYSTHFoQO6YACpLtR-xIJY3PQDCnH4la7o9sbaUNum9idtbFvrfVnaEHNnFCfrMza4LqiISPMH9wsI2iFRvjQnju0WlAxZYgTLGokrmUXCI4SU200Hw7gF6evNouR6xYrppxSCmw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/author/37398502200
https://ieeexplore.ieee.org/author/37332494800
https://ieeexplore.ieee.org/author/37332496900
https://ieeexplore.ieee.org/abstract/document/4448543
https://doi.org/10.1109/CISCE62493.2024.10653438
https://doi.org/10.1145/3273905
https://doi.org/10.1109/CompComm.2016.7925074
https://doi.org/10.1109/CompComm.2016.7925074
https://doi.org/10.1007/978-981-15-1483-8_38
https://doi.org/10.1109/IITA-GRS.2010.5603226
https://doi.org/10.1109/IITA-GRS.2010.5603226
https://doi.org/10.1109/DASC.2014.76
https://ieeexplore.ieee.org/author/38235048400
https://ieeexplore.ieee.org/author/37421853400
https://ieeexplore.ieee.org/author/37085860668
https://ieeexplore.ieee.org/author/37680550400
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/JIOT.2015.2505901
https://www.embedded.com/windows-ce-vs-vxworks-2023
https://www.embedded.com/windows-ce-vs-vxworks-2023
https://doi.org/10.1142/9789814733663_0054
https://doi.org/10.1142/9789814733663_0054
https://www.sciencedirect.com/science/article/abs/pii/S0736584507001111
https://doi.org/10.1109/EMEIT.2011.6023222
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1501327980a904907c163286fb76adf88fcd09cc
https://doi.org/10.1109/ICMT.2011.6002064
https://ieeexplore.ieee.org/author/37374294200
https://ieeexplore.ieee.org/author/37354039700
https://ieeexplore.ieee.org/author/37087695751
https://doi.org/10.1109/CSEE.2000.827056
https://doi.org/10.1109/CSEE.2000.827056
https://doi.org/10.1109/IFEEA64237.2024.10878540
https://doi.org/10.1109/IFEEA64237.2024.10878540
https://kmyr.de/thesis/Bachelorarbeit-Buquerin.pdf

Abuazoum

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, July-December 2025 Page 15

Aug. 2022. https://doi.org/10.1504/IJES.2022.124839.

[20] Y. Yi, Q. Liu, L. Zhao, B. Wang, and Z. Zhang, "Design of the

master control system of the array antenna based on the

VxWorks," in Proc. 4th Int. Conf. Intelligent Computation

Technology and Automation (ICICTA), Shenzhen, China, Mar.

28-29, 2011, vol. 1, pp. 414-417, https://doi.org/10.1109/

ICICTA.2011.414.

[21] .W. Lee, S. C. Kim, D.-K. Woo, Y.-S. Ma, and P. Mah,

"Performance comparison of MRTOS and VxWorks in

MultiBench benchmark suite," in Proc. 19th Int. Conf. Adv.

Commun. Technol. (ICACT), PyeongChang, Korea (South),

2017. https://doi.org/10.23919/ICACT.2017.7890218

[22] S. Yang, L. Wang, S. Zhang, and J. Liu, "A Method on

Extracting Registry Information from Windows CE Memory

Images," in Proc. IEEE Int. Conf. Computer Science and

Applications (CSA), Wuhan, China, Dec. 14–15, 2013, pp. 1–5,

https://doi.org/10.1109/CSA.2013.175.

[23] S. Yang, L. Wang, and S. Zhang, "Exploratory study on memory

analysis of Windows CE device," in Proc. IEEE Int. Conf.

Intelligent Computation Technology and Automation (ICICIP),

Jun. 9–11, 2013. https://doi.org/10.1109/ICICIP.2013.6568120

[24] J. Min, "A Design of Embedded Terminal Unit Based on ARM

and Windows CE," in Proc. 8th Int. Conf. Electronic

Measurement and Instruments (ICEMI), Aug. 16-18, 2007.

https://doi.org/10.1109/ICEMI.2007.4350687.

[25] S. Xiao, D. Li, Y. Lai, J. Wan, and S. Feng, "An Open

Architecture Numerical Control System Based on Windows

CE," in Proc. IEEE Int. Conf. Control and Automation (ICCA),

Guangzhou, China, May 30-Jun. 1, 2007. https://doi.org/

10.1109/ICCA.2007.4376558.

[26] G. Qinlong, C. Xingmei, T. Weiwei, and Y. Minghai, "Study and

application of SQLite embedded database system based on

Windows CE," in Proc. 2nd Int. Conf. Information Science and

Engineering (ICISE), Hangzhou, China, Dec. 4-6, 2010

https://doi.org/10.1109/ICISE.2010.5691551.

[27] H. Wang, Z. Wang, and H. Lin, "A universal IO controller based

on Windows CE and C#," in Proc. Int. Conf. Computer

Application and System Modeling (ICCASM), Taiyuan, China,

Oct. 22-24, 2010. https://doi.org/10.1109/ICCASM.2010.

5619286.

[28] X. Dong, L. Jianqun, and W. Jirong, "Research on real-time

control of embedded NC system based on Windows CE 5.0,"

in Proc. Int. Conf. Mechanic Automation and Control

Engineering (MACE), Wuhan, China, Jun. 26-28, 2010.

HTTPS://DOI.ORG/10.1109/MACE.2010.5536252.

[29] Y. Zhang, D. Xue, C. Wu, and P. Ji, "Research of Portable

Information Terminal Based on MIPS Processor and Windows

CE," in Proc. Int. Conf. Advanced Computer Control (ICACC),

Singapore, Jan. 22-24, 2009. https://doi.org/10.1109/ICACC.

2009.97.

[30] J. Zhou and J. Yu, "Multithread serial communication model

based on Windows CE," in Proc. Int. Conf. Electric Information

and Control Engineering (ICEICE), Wuhan, China, Apr. 15-17,

2011. https://doi.org/10.1109/ICEICE.2011.5777858.

[31] L. Wu, W. Zhang, Y. Li, and F. Zhao, "Design and

implementation of FPGA data communication interface driver

based on Windows CE," in Proc. Int. Conf. Advanced Computer

Theory and Engineering (ICACTE), Chengdu, China, Aug. 20-

22, 2010. https://doi.org/10.1109/ICACTE.2010.5579864.

[32] R. Barry, "FreeRTOS: A Portable, Open Source, Mini Real-

Time Kernel," FreeRTOS.org, 2020 https://www.freertos.org/

[33] QNX Software Systems, "QNX Neutrino RTOS: A Foundation

for Performance, Reliability, and Scalability," BlackBerry

Limited, 2022. https://www.qnx.com/products/neutrino-rtos/.

[34] RTEMS Project, "RTEMS: Real-Time Executive for

Multiprocessor Systems," RTEMS.org, 2021.

https://www.rtems.org/.

[35] Silicon Labs, "Micrium OS: A High-Performance RTOS for

Embedded Systems," Silicon Labs, Inc., 2020.

https://www.silabs.com/developers/micrium-os.

[36] Microsoft, "ThreadX: A Real-Time Operating System for

Embedded Applications," Microsoft Corporation, 2023.

https://learn.microsoft.com/en-us/azure/rtos/threadx/.

[37] Mentor Graphics, "Nucleus RTOS: A Scalable Real-Time

Operating System," Siemens Digital Industries Software, 2021.

https://www.mentor.com/embedded-software/nucleus/

[38] G. Di Marzo, "ChibiOS/RT: A Compact and Efficient Real-Time

Operating System," ChibiOS.org, 2022. http://www.chibios.org

[39] Zephyr Project, "Zephyr RTOS: A Scalable Real-Time Operating

System for IoT Devices," The Linux Foundation,

2023. https://www.zephyrproject.org/

https://doi.org/10.1504/IJES.2022.124839
https://doi.org/10.1109/ICICTA.2011.414
https://doi.org/10.1109/ICICTA.2011.414
https://doi.org/10.23919/ICACT.2017.7890218
https://doi.org/10.1109/CSA.2013.175
https://doi.org/10.1109/ICICIP.2013.6568120
https://doi.org/10.1109/ICEMI.2007.4350687
https://doi.org/10.1109/ICCA.2007.4376558
https://doi.org/10.1109/ICISE.2010.5691551
https://doi.org/10.1109/ICCASM.2010.5619286
https://doi.org/10.1109/ICCASM.2010.5619286
https://doi.org/10.1109/MACE.2010.5536252
https://doi.org/10.1109/ICACC.2009.97
https://doi.org/10.1109/ICACC.2009.97
https://doi.org/10.1109/ICEICE.2011.5777858
https://doi.org/10.1109/ICACTE.2010.5579864
https://www.freertos.org/
https://www.qnx.com/products/neutrino-rtos/
https://www.rtems.org/
https://www.silabs.com/developers/micrium-os
https://learn.microsoft.com/en-us/azure/rtos/threadx/
https://www.mentor.com/embedded-software/nucleus/
http://www.chibios.org/
https://www.zephyrproject.org/

