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تقنية     تطبيق  في  الورقة  هذه  في    Hadoop MapReduce تبحث  النطاق  واسعة  السريرية  البيانات  لتحليل 

سياق التنبؤ بمخاطر الإصابة بأمراض القلب والأوعية الدموية. وبالاعتماد على مجموعة بيانات حقيقية تضم 

من طبي  500,000 أكثر  من سجل  جمعها  المختار   تم  يدمج مصحة  موزعًا  تحليليًا  مسارًا  الدراسة  نفّذت  طرابلس،  في 

التجميع     Spark  داةالأ و    Hadoop MapReduce بين مثل  الآلي  التعلم  خوارزميات  إلى  -Kو   K-meansبالإضافة 

Medoids  معالجة  في  وقد حقق النظام المقترح كفاءة  .    والتجميع الهرمي وأشجار القرار لتحديد الأنماط وتصنيف المرض ى

. كما أدى دمج أدوات التحليل المتقدّمة في حالات أمراض القلب  %89 ودقة تنبؤية بنسبة  ،%92 بيانات بلغتال

بنسبة   إلى التشخيص  دقة     %5تحسين 
ً
العالية   مقارنة قابليتها  النظام  بنية  أثبتت  وقد  التقليدية.  بالطرق 

الرعاية  لبيئات  خاص  بشكل  مناسبة  يجعلها  مما  التشغيلية،  ومرونتها  الأعطال،  تحمّل  على  وقدرتها  للتوسّع، 

ط هذه النتائج الضوء على الإمكانات الكبيرة للمنهجيات المعتمدة  
ّ
الصحية ذات الموارد التقنية المحدودة. وتسل

 .اقات منخفضة المواردعلى البيانات في تعزيز اتخاذ القرار السريري وتحسين مخرجات الصحة العامة في السي

 

Introduction 
The rapid advancement of modern technologies has led to an 

exponential increase in the volume and complexity of data 

generated within the healthcare sector. This surge presents 

unprecedented opportunities to improve patient outcomes 

through the application of advanced analytical 

methodologies. Among these, Big data analytics has emerged 

as a critical tool for addressing complex healthcare 

challenges, enabling deeper understanding of medical 

records, treatment responses, and patient behavior patterns.  

However, traditional data analysis tools often fall short in 

handling the volume, velocity, and variety of healthcare data. 

This has created a pressing need for more agile and scalable 

solutions capable of managing and extracting insights from 

large-scale, heterogeneous datasets.  
Hadoop, an open-source framework for distributed data 

storage and processing, offers a powerful solution to these 

challenges. Built on the MapReduce programming model, 

Hadoop enables parallel processing of vast datasets, making 

it especially suitable for analyzing complex healthcare data. 

When combined with advanced tools like  Spark and machine 
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learning algorithms, such as K-means, K-Medoids, 

hierarchical clustering, and decision trees, the platform 

supports predictive analytics that can uncover hidden patterns 

and improve clinical decision-making. 

The application of big data analytics in healthcare has shown 

promising results in areas such as disease surveillance, 

personalized medicine, and operational efficiency. For 

instance, analyzing large-scale Electronic Health Records 

(EHRs) can facilitate early disease detection, optimize 

treatment protocols, and improve resource allocation. Despite 

its potential, the adoption of such technologies remains 

limited in many regions, including Libya, where healthcare 

systems face structural and technological barriers to 

leveraging big data effectively. 

This study aims to bridge this gap by designing and 

implementing a Hadoop-based analytics platform for the 

analysis of medical data from Al-Mukhtar Hospital in Tripoli. 

Focusing on cardiovascular health, the research demonstrates 

how big data technologies can support evidence-based 

decision-making and drive improvements in patient care, 

particularly in resource-constrained healthcare environments. 

Apache Hadoop  

Apache Hadoop constitutes an open-source software 

framework utilized for the storage and processing of 

extensive datasets. It is capable of handling data volumes 

ranging from gigabytes to petabytes. The development of 

Hadoop was undertaken by the Apache Software Foundation. 

The conception of Apache Hadoop is attributed to Doug 

Cutting, who is also the originator of Apache Lucene  [1]. 

Hadoop is comprised of three fundamental components: 

Hadoop Distributed File System (HDFS): This serves as the 

storage layer of the Hadoop ecosystem. Map-Reduce: This 

operates as the data processing layer of Hadoop. YARN: This 

functions as the resource management layer of Hadoop [2]. 

Fig.1: Hadoop Cluster 

 

Apache Hadoop Architecture 

Apache Hadoop adheres to a Master-Slave architectural 

framework, wherein the Master node is tasked with 

delegating responsibilities to various Slave nodes, managing 

resources, and maintaining metadata, while the Slave nodes 

are charged with executing computations and storing actual 

data [3]. According to the literature, Hadoop encompasses 

three distinct architectural layers: Map-Reduce, YARN, and 

HDFS, as illustrated in Figure (2). 
 

Fig.2: Apache Hadoop Architecture 

 

HDFS 

The Hadoop Distributed File System (HDFS) is a distributed 

file system meticulously engineered to accommodate 

exceedingly large volumes of data, ranging from petabytes to 

potentially zettabytes, while also providing high-throughput 

access to this data. Files are systematically stored in a 

redundant manner across multiple machines to guarantee 

their resilience against failures and to ensure high availability 

for highly parallel applications. Specifically, it safeguards the 

durability of Big Data in the face of failures and ensures high 

accessibility for parallel applications [4,5,6]. Figure (3) 

illustrates that HDFS employs a master/slave architecture. An 

HDFS cluster is composed of a singular NameNode, a master 

server responsible for managing the file system namespace 

and regulating client access to files. Additionally, the cluster 

contains multiple DataNodes, typically one for each node 

within the cluster, which oversee the storage corresponding to 

their respective nodes. HDFS presents a file system 

namespace and permits the storage of user data within files. 

Internally, a file is divided into one or more blocks, which are 

subsequently stored across a collection of DataNodes [6]. 

 

 

Fig.3: HDFS architecture [7] 

 

The NameNode is tasked with executing operations 

pertaining to the file system namespace, which include the 

actions of opening, closing, and renaming files and 

directories. Furthermore, it is responsible for establishing the 

mapping of data blocks to DataNodes. 

The DataNodes fulfill the role of addressing read and write 

requests originating from the clients of the file system. 

Additionally, the DataNodes are engaged in block creation, 

deletion, and replication, as directed by the NameNode. The 

Hadoop Distributed File System (HDFS) is constructed 

utilizing the Java programming language; consequently, any 

computing device that is compatible with Java is capable of 

operating the software for either the NameNode or the 

DataNode. An HDFS cluster consists of a NameNode that 
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oversees the metadata of the cluster, alongside DataNodes 

that are tasked with data storage. The representation of files 

and directories on the NameNode is executed through inodes. 

Inodes document various attributes, including permissions, 

modification and access timestamps, along with namespace 

and disk space quotas. The contents of files are partitioned 

into substantial blocks (typically 128 megabytes), and each 

block is independently replicated across multiple DataNodes. 

These blocks are preserved within the local file systems of 

the DataNodes. The NameNode proactively supervises the 

quantity of replicas associated with each block. In instances 

where a block's replica is compromised due to a failure of a 

DataNode or a disk malfunction, the NameNode initiates the 

creation of an additional replica of that block. The 

NameNode sustains the namespace tree and the mapping of 

blocks to DataNodes, retaining the comprehensive namespace 

image within RAM. It does not directly issue requests to the 

DataNodes. Rather, it communicates instructions to the 

DataNodes in response to heartbeats emitted by those 

DataNodes. These instructions encompass directives to: 

replicate blocks to alternative nodes, eliminate local block 

replicas, re-register and submit an immediate block report, or 

deactivate the node  [10]. 

Map-Reduce  

The MapReduce paradigm serves as the data processing layer 

within the Hadoop ecosystem; it partitions tasks into smaller 

components and allocates these components across numerous 

interconnected machines, subsequently consolidating all 

events to generate the final event dataset, as illustrated in 

Figure (4). The primary informational construct employed by 

MapReduce is the key-value pair, which facilitates the 

translation of any data type into a key-value pair format, 

followed by its subsequent processing. Within the 

MapReduce Framework, the processing unit is strategically 

relocated to the data itself, rather than the data being 

transported to the processing unit [11,12]. 

 

 

Fig.4: MapReduce Flow 

YARN 

YARN is an acronym for "Yet Another Resource 

Negotiator," which represents the Resource Management tier 

within the Hadoop Cluster architecture. This framework is 

instrumental in executing job scheduling and managing 

resources within the Hadoop ecosystem. The fundamental 

premise of YARN is to bifurcate the functions of resource 

management and job scheduling into distinct processes, 

thereby facilitating the execution of these operations [8,9]. 

The YARN framework comprises two primary daemons, 

namely the Resource Manager and the Node Manager. These 

components collaboratively engage in the processing of data 

computation within the YARN architecture. The Resource 

Manager operates on the master node of the Hadoop cluster, 

overseeing the allocation of resources across all applications, 

while the Node Manager is deployed on each Slave node, as 

illustrated in Figure (5). The Node Manager's responsibilities 

encompass the monitoring of containers, the utilization of 

resources—including CPU, memory, disk, and network—and 

the provision of detailed information to the Resource 

Manager  [2]. 

Apache Hadoop Ecosystem 

The Apache Hadoop ecosystem constitutes a comprehensive 

array of services that can be employed at various stages of 

big data processing, utilized by numerous organizations to 

address  

complex big  data  challenges. The  Hadoop  Distributed   

File System (HDFS) and HBase serve as data storage 

solutions, 

Fig.5: components of YARN 

while Spark and MapReduce facilitate data processing; 

Flume and Sqoop are designed for data ingestion, and Pig, 

Hive, and Impala are utilized for data analysis, with Hue and 

Cloudera Search assisting in data exploration. Oozie 
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orchestrates the workflow associated with Hadoop jobs. 

Mahout has been developed to ensure enforcement, 

scalability, and compliance, among other functionalities, the 

Apache Hadoop ecosystem as illustrated in Figure (6) [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: Apache Hadoop Ecosystem Timeline  [14] 

 

Spark 

Hadoop offers a cluster storage methodology, while Spark 

presents a scalable data analytics framework characterized by 

in-memory computing. Empirical evidence has demonstrated 

that in-memory computing facilitates expedited data retrieval 

by obviating the associated overhead. Spark operates within 

an open-source ecosystem that enhances computational 

capabilities, thereby establishing its superiority over Hadoop. 

The architecture of Spark is specifically tailored for explicit 

applications, including machine learning algorithms and 

natural language processing tasks. The drivers operating 

within Spark perform two distinct types of operations: (1) 

Action and (2) Transformation. The Action operation is 

analogous to the reduce function, whereas the Transformation 

operation resembles the map and cache functions. Spark is 

constructed using the Scala programming language and it 

supports Scala, a functional programming paradigm designed 

to facilitate a distributed and iterative computational 

environment [15]. 

Definition of Big Data 

Big Data denotes extensive datasets that cannot be effectively 

processed through conventional computational 

methodologies. These datasets are distinguished by their 

considerable volume, rapid velocity, and diverse variety, 

necessitating advanced methodologies and technologies for 

the capture, storage, distribution, management, and analysis 

of information. Consequently, Big Data constitutes a 

multifaceted domain that comprises a variety of tools, 

techniques, and frameworks aimed at augmenting insights, 

enhancing decision-making, and automating processes[16,4]. 

Characteristics of Big Data 10V's 

A comprehensive set of characteristics and determinants has 

been formulated to categorize data as large-scale, referred to 

as the "Vs," commencing with three characteristics and 

extending to ten, each of which begins with the letter V, 

specifically indicating that the data size exceeds one terabyte. 

Variety: the diversity of data encompassing both structured 

and unstructured formats. 

Speed (Velocity): the continuous generation of data at 

extraordinarily high rates. 

Accuracy/Reliability (Veracity): the necessity for the data to 

be both trustworthy and precise. 

Value: the ability to convert various types of data into 

actionable insights. 

Visualization: the expertise in representing and illustrating 

data in a manner that facilitates efficient comprehension by 

the audience. 

Variation/Variability: The extent of differences present in the 

data as a consequence of alterations in structure, meaning, or 

form. 

Vulnerability: Ensuring the security and privacy of data. 

Quality / Credibility (Validity): the requirement that data 

sources are accurate and that the data is dependable for its 

intended application. 

Volatility: The timeframe of data validity and the duration of 

its storage as illustrated in Figure (7) [5]. 

 

Fig.7: 10V's of big data [17] 

 

Big data sources 

Big data encompasses the information generated by various 

devices and applications. The following are several domains 

that fall under the purview of Big Data  as illustrated in 

Figure (8). 

 

 

Fig.8: Big data sources [18] 

 

Black Box Data: This component pertains to helicopters, 

airplanes, and jets, capturing the auditory communications of 

the flight crew, recordings from microphones and headsets, 

as well as the operational data of the aircraft. 

Social Media Data: Platforms such as Facebook and Twitter 

aggregate information and opinions expressed by millions of 

individuals worldwide. 

Stock Exchange Data: The data from stock exchanges 

contains information regarding the 'buy' and 'sell' transactions 

executed on shares of various companies by consumers. 

Power Grid Data: The power grid data encompasses 

information regarding the consumption attributed to a 

specific node relative to a base station. 

Transport Data: Transport data comprises details about 

model, capacity, distance, and availability of vehicles. 
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Search Engine Data: Search engines aggregate extensive data 

from diverse databases. 

Natural phenomena study projects: Significant volumes of 

data are generated from experiments conducted in this 

domain. 

Sensors: Sensors affixed to numerous devices capture 

substantial amounts of data. 

Patient records: Extensive records are compiled in medical 

facilities that encompass a wealth of information about prior 

patients and their medical conditions, including treatment 

methodologies. This data can yield significant insights when 

analyzed. 

Internet of Things: A considerable volume of data is 

generated by devices interconnected via the Internet (tools, 

sensors, various artificial intelligence instruments) [19]. 

Gene data: An abundance of data regarding humans, animals, 

and plants, containing information about these organisms, is 

increasingly becoming accessible on the web [17]. 

Big Data Analytics 

Big data analytics pertains to the methodologies involved in 

the collection, organization, and analysis of large datasets 

("big data") to elucidate patterns and derive valuable insights. 

This process not only enhances the understanding of the 

information encapsulated within the data but also aids in 

pinpointing the most critical data for the organization and its 

forthcoming strategic decisions. Essentially, big data analysts 

seek the insights that emerge from the examination of the 

data  [10]. 

Methodology 
Data Source and Selection  

Medical data was sourced from the Al-Mukhtar Clinic in 

Tripoli, encompassing over 500,000 records from January 

2017 to March 2018. The dataset included diverse medical 

indicators such as liver and kidney function tests, cholesterol 

levels, diabetes markers, blood diseases, and other critical 

health parameters. The variety of data types allowed for a 

comprehensive analysis, representing real-world clinical 

scenarios  as illustrated in Figure (9) [15]. 

Data Preprocessing 

i. Initial preprocessing involved cleaning the dataset to 

remove inconsistencies, duplicates, and missing values. 

ii. Data normalization and standardization ensured 

uniformity across different metrics, preparing the 

dataset for efficient processing. 

System Setup 

i. A single-node Hadoop cluster was established within the 

Department of Electrical and Electronic Engineering. 

ii. The Hadoop Distributed File System (HDFS) was 

configured for storage, and MapReduce was 

implemented for distributed data processing. 

iii. Apache Spark was integrated into the cluster to support 

machine learning algorithms and enhance computational 

performance  as illustrated in Figure (10). 

Experimentation and Analysis 

i. The workflow began with the deployment of Hadoop's 

MapReduce framework for data processing. Tasks were 

distributed across multiple nodes, utilizing parallel 

computing to achieve efficiency. 

ii. Key analytical techniques included: Clustering: K-means 

and K-medoids algorithms were employed to group 

cardiovascular data based on risk factors. 

Classification: Decision tree classifiers and logistic 

regression models analyzed correlations between health 

parameters. 

iii. Exploratory Data Analysis (EDA) techniques were used to 

visualize distributions, correlations, and trends in the 

dataset. 

Performance Metrics 

i. Accuracy Metrics: System performance was evaluated 

using precision, recall, F1-score, and overall accuracy, 

achieving a prediction accuracy of 89%. 

ii. Scalability: The system successfully handled the storage 

and analysis of over 500,000 records, processing data in 

under three hours. 

 

Fig.9:  Stages of the proposed Hadoop model 

Visualization 

Visualization tools such as Tableau and Spark’s MLlib 

provided graphical representations of cholesterol levels, 

cardiovascular risk patterns, and data clustering outcomes. 

Validation 

The findings were cross-validated against established medical 

benchmarks to ensure the reliability and relevance of the 

insights generated. 

Results 
The proposed Hadoop-based system demonstrated the ability 

to process and analyze large medical datasets efficiently  as 

illustrated in Figure (11). Key findings include, High 

scalability and fault tolerance in data handling, Identification 

of significant patterns related to cardiovascular health and 

Improved prediction accuracy through the integration of 

machine learning techniques. 
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Fig.10: The main steps to install Hadoop 3.X on a single node 

Fig.11: The working mechanism of the proposed system 

Performance Metrics Results 

The Hadoop-based system achieved a prediction accuracy of 

89% for cardiovascular health risks, demonstrating its 

effectiveness in analyzing medical datasets [20]. The class 

label distribution for the dataset of cardiovascular patients is 

explored. It is worth noting that the numbers are almost 

balanced, with the percentage of healthy samples being 

53.4% to the percentage of infected samples being 46.6%, as 

shown in Figure (12). 

 

Fig.12: Percentage of healthy and infected samples 

Data handling efficiency was measured at 92%, with the 

system processing over 500,000 records in under three hours, 

highlighting its scalability and computational power. 

Data Insights 

i.The analysis identified significant patterns, such as a strong 

correlation between cholesterol levels and cardiovascular 

disease risks, providing actionable insights for medical 

decision-making. 

ii.Clustering algorithms (K-means and K-medoids) grouped 

patients into distinct risk categories, enabling targeted 

healthcare interventions. Both the K-means and K-Medoids 

algorithms proved effective because there were no outliers. 

As in Figure (13).  

 

 

Fig.13: A comparison of the Silhouette Score performance metric for 

clustering algorithms 

The results were As in Table (1), we found an over fitting of 

100%, so the model was rejected and excluded. Table (1) 

presents a comparison of the performance of three different 

binary classification models based on the Decision Tree 
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algorithm. DT_Hierarchical appears to give perfect results on 

paper (100% on almost all metrics), but it often suffers from 

overfitting, as it has no errors at all, which is often unrealistic in 

the real world. DT_KMeans, on the other hand, gave the best 

balance of all metrics, with high test accuracy and low error—

indicating a robust model. DT_KMedoids performed averagely, 

slightly less than KMeans but better than many traditional 

methods. Therefore, it was chosen for this research. 

Table 1: The most important results obtained are errors and accuracy 

DT_Hier

archical 

DT_KMedoids DT_kmeans Performance 

Metrics 

1.0 0.964157706093 0.9713261648 train_acc 
1.0 0.946808510638 0.9680851063 test_acc 
1.0 0.95 0.97 Precision 
1.0 0.95 0.96 Recall 
1.0 0.95 0.97 f1-score 

0 25.3  3.19 
Mean Absolute 

Error(%) 

0 23.06 17.86 
Mean Squared 

Error (%) 
100 94.68 96.81 Accuracy (%) 

Visualization of Results 

Graphical representations of the data showcased clear trends 

in key health parameters, such as cholesterol levels and their 

impact on cardiovascular risk, supporting more informed 

clinical practices. Figure (14) clearly shows the separation 

between healthy and affected samples in the cholesterol trait, 

where the cholesterol value for normal healthy people, i.e. in 

the healthy CLASS, ranges in the normal range from 49.4 to 

172.9, while the cholesterol rates for patients at risk of clots 

range from 188.3 to 497 [21].  

Regarding the effect of the trait of triglycerides accumulation, 

the separation is unclear between patients at risk of stroke 

and healthy people. The figure shows a mixture between the 

two cases in CLASS, where the lipid levels for patients range 

from 50.6 to 620 and for healthy people as well, as in Figure 

(15). Thus, it supports the hypothesis regarding the weak 

effect of triglycerides accumulation on CLASS. 

The effect of HDL on the separation between samples 

appears unclear in Figure (16), as the value for healthy 

samples ranges from 8 to 81.6, while for infected samples the 

value ranges from 35.67 to 97. The effect of HDL on the 

separation between samples appears unclear in Figure (16), as 

the value for healthy samples ranges from 8 to 81.6, while for 

infected samples the value ranges from 35.67 to 97 . 

Likewise, from Figure (17) we find that “LDL” has an effect 

on CLASS. Because there is a clear distinction between 

healthy and infected samples, shown in Figure (17), with the 

values of the healthy sample ranging from 17 to 133 and the 

values of the infected sample ranging from 110 to 353.  

 
Fig.14: Effect of cholesterol in infected and healthy samples 
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Fig.15: Effect of triglycerides in infected and healthy samples 

 

 

Top 4 features by Pearson Correlation Analysis 

The best 4 attributes were analyzed through Pearson 

correlation analysis, which is another experiment regarding 

the correlation with the target, where a CLASS is performed 

between the attributes and each other. Figure (18) shows the 

top 4 features associated with CLASS in descending order, 

where yellow colors represent positive correlation and blue 

color represents negative correlation. 

Using Pearson correlation analysis, “Cholesterol” was the trait 

best associated with CLASS (76%), followed by “LDL” (73%), 

and “HDL” (36%), respectively. Triglyceride was the weakest 

trait with CLASS (19%). This result is consistent with the 

expectations of the specialist internal medicine physician, blood 

laboratory experts, and clinical chemistry. As a result, attributes 

that are closely related to the target will be selected for further 

investigation and testing. 

 
Fig.16: Effect of HDL in infected and healthy samples 
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Fig.17: Effect of LDL in infected and healthy samples 

When we checked the linear correlations between traits, we 

noticed that the strongest linear relationships, according to 

the scatter plot, were between “Cholesterol” and “LDL” 

(29%), and “Cholesterol” with “Trigglyceride” (35%). 

“Cholestero” with “HDL” at a rate of (32%), and “LDL with” 

Triglyceride at a rate of (22%).  

Separating infected and healthy samples 

We will examine the potential of the effect in more depth 

using a box plot. In this analysis only some filtered features 

have been selected from the Pearson correlation analysis. 

Their effect on CLASS will be examined, and their 

separation between affected and healthy samples will be 

explained below: 

From the box plot in Figure (19) it shows that both 

“Cholesterol” and “LDL” have a clear separation between the 

affected and healthy samples and that they have a strong 

effect on CLASS. This supports the hypotheses that their 

increase in blood fats is the main cause of a heart attack, 

while “HDL” “It appears at a lower level. While the 

“Triglyceride” feature does not have a clear separation on 

healthy and diseased samples, its effect is minimal on 

CLASS due to the appearance of outliers, and this matches 

the hypothesis that the accumulation of triglycerides alone in 

the blood does not threaten the occurrence of a clot [22]. 

 

 

Fig.19: Top 4 attributes associated with CLASS in descending order 
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Fig.19: A box plot showing the ability of features to separate 

 

 
Fig.20: Connected devices within a Hadoop cluster 

 

System Resilience 

The system exhibited robust fault tolerance, effectively 

managing simulated node failures without impacting 

performance or data integrity as illustrated in Figure (20). 

Practical Application: 

The findings confirmed the platform's potential to optimize 

healthcare analytics, especially in resource-constrained 

environments, making it a valuable tool for improving patient 

outcomes and operational efficiency. 

The Pivot Table presented in Figure (21) provides an initial 

overview of the relationship between fat levels and health 

status. This table aims to compare the mean values of several 

biochemical indicators (total cholesterol, HDL, LDL, and 

triglycerides) between two groups: an affected group and a 

healthy group. By analyzing these means, we can draw 

preliminary conclusions regarding the relationship between 

these indicators and health status. 

 

Fig.21: Shows a Pivot Table plot for an average of 4Features related to 

infected and healthy samples CLASS 

Variable Definitions: 

CLASS: This indicates the classification of an individual as 

either belonging to the affected group (positive) or the 

healthy group (negative). 
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Cholesterol_in: This denotes the average total cholesterol 

level within the group. 

HDL_Cholesterol_in: This represents the average level of 

high-density lipoprotein (HDL) cholesterol in the group. 

LDL_Cholesterol_in: This signifies the average level of low-

density lipoprotein (LDL) cholesterol in the group. 

Triglyceride_in: This indicates the average level of 

triglycerides in the group. 

To discuss the results of the analysis by comparing means 

between the two groups, we observe the following: 

Elevated Total Cholesterol and Triglycerides in the 

Affected Group 

The higher values of total cholesterol and triglycerides in the 

affected group suggest a potential correlation between 

elevated levels of these factors and an increased risk of heart 

disease and angina. Most individuals in the healthy group had 

an average cholesterol level of 133.25, which is considered 

normal, while the majority of the affected individuals had an 

average cholesterol level of approximately 207. This supports 

the hypothesis that elevated cholesterol levels are common 

among patients with angina. 

This finding aligns with the study by Al-Ajmi (2021), which 

indicates that increased cholesterol levels can lead to the 

formation of fatty plaques in the arteries. This process raises 

the risk of cardiovascular disease, contributes to 

hypertension, and may negatively impact heart health, 

thereby increasing the risk of angina [19]. 

Increased LDL Levels in the Affected Group: 

Low-density lipoprotein (LDL) cholesterol, commonly 

referred to as "bad" cholesterol, is associated with a higher 

risk of cardiovascular diseases when elevated. 

Decreased HDL Levels in the Affected Group: 

High-density lipoprotein (HDL) cholesterol, known as 

"good" cholesterol, is linked to a lower risk of cardiovascular 

diseases when present in adequate amounts. 

Healthy individuals exhibited average HDL and LDL values 

of 40 and 76, respectively. In contrast, the affected group 

showed higher average LDL levels of 136.4 and higher HDL 

levels of 51.5, which is somewhat inconsistent with the 

typical pattern and may require further investigation. 

Additionally, healthy individuals had average triglyceride 

levels of 122.5, while affected individuals had an average of 

154, which remains within or close to the upper limit of the 

normal range. These results indicate that obesity alone may 

not be the primary factor in the development of angina. 

Instead, elevated cholesterol and LDL levels, combined with 

reduced HDL levels, appear to have a more significant 

impact than triglyceride levels or overall fat intake. 

This analysis demonstrates a correlation between lipid levels 

and health status; however, it does not establish causation. 

Other underlying factors may influence this relationship, 

which is consistent with the findings of Mahmoud et al. 

(2013). That study suggests that other causative mechanisms, 

such as vasodilation, may also contribute to the onset of 

angina attacks [23]. 

These results provide a solid foundation for this research, 

highlighting the innovative use of Hadoop and machine 

learning to address real-world challenges in healthcare 

analytics. 

Discussion  
The findings from this study underline the transformative 

potential of big data analytics in healthcare, particularly in 

resource-limited environments like Libya. The successful 

application of Hadoop and machine learning algorithms 

highlights several key advantages: 

1. Enhanced Data Utilization: The system demonstrated the 

ability to process and analyze vast datasets, uncovering 

patterns that can significantly impact patient care and clinical 

decision-making. For instance, the clustering and 

classification techniques enabled more precise segmentation 

of patient risk categories. 

2. Scalability and Fault Tolerance: By leveraging Hadoop's 

distributed framework, the system showcased remarkable 

scalability and reliability, ensuring uninterrupted operations 

even under simulated node failures. This reliability is critical 

for real-world applications in healthcare where data integrity 

and availability are paramount. 

3. Actionable Insights for Healthcare: The integration of 

Spark's machine learning tools provided enhanced predictive 

capabilities, contributing to improved diagnostic accuracy. 

These insights can inform preventative measures, optimize 

resource allocation, and support evidence-based 

policymaking. 

4. Potential for Broader Applications: While this study 

focused on cardiovascular health data, the framework is 

adaptable to other healthcare domains, including 

epidemiology, chronic disease management, and personalized 

medicine. 

Conclusion 
This study lays a solid foundation for integrating big data 

analytics into the Libyan healthcare sector. The Hadoop 

platform has proven effective in addressing the challenges of 

analyzing large-scale medical data, providing actionable 

insights and enhanced predictive capabilities. Future research 

can build upon these findings by exploring real-time 

analytics, implementing comprehensive data digitization 

across healthcare organizations, integrating additional data 

sources, and applying the framework to a broader range of 

healthcare applications. 

It is also essential to address issues related to missing data 

caused by human error or insufficient data collection. At the 

same time, data privacy concerns must be carefully managed 

to ensure responsible and ethical data use. Prior to data 

collection, thorough investigations and clearly defined 

analytical objectives must guide the process. 

Furthermore, the system should be optimized to support real-

time interaction and performance, alongside the development 

of a user-friendly interface that enables healthcare 

practitioners to easily access and interpret the analytics and 

insights generated by the system. 

These advancements have the potential to revolutionize 

healthcare practices, making them more data-driven, 

efficient, and patient-centric. 
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