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 ممتدة المرونة المكانية المتوازنة داخليا 

 1أشرف حدوش

 الملخص  الكلمات المفتاحية:  

 التمددات الرئيسية 

 فرط المرونة 

 التوازن الداخلي 

   المرونة المكانية ممتدة

ق  ي  الطبَّ التحلل  هذا  أجزاء  على  للتغيرات  والتكامل  التفاضل  حساب  براهين  المعالجة المبحث  هذه  تحتوي  التشوه.  لتدرج  ضاعف 

صياغة   العمل  هذا  يوفر  المتحللة.  الرئيسية  التمددات  بدلالة  صياغته  تمت  الذي  المكثف  المادة  مرونة  موتر  على  داخليًا  المتوازنة 

 يكافئ الدفع إلى الأمام لمشد مرونة المادة المكثف
ً

ة. يتم  صريحة لتحديد موتر المرونة المكانية المكثفة. تقدم الصيغة الصريحة إجراءً بديلً

على    دراسة حالة من صحة الصيغة الجديدة  ت حققكما  تقديم شرح توضيحي باستخدام نموذج تكويني لوغاريتمي للتوازن الداخلي.  

 .قص بسيط

 

Introduction 
Finite deformation often applies deformation gradient 

multiplicative decomposition 

𝐹 = �̂��̆� (1) 

That is implemented to model advance aspects of 

deformation in abroad spectrum of applications [1-6]. A new 

treatment of hyperelasticity [7,8] applies the arguments of 

calculus of variations to both decomposed portions. This 

provides the stress equations of equilibrium and an internally 

balanced equation which is used to determine the 

decomposed portions of 𝑭. Recently, the material elasticity 

tensor is formulated using principal stretches of decomposed 

portions in the reference configuration [9]. Then, the spatial 

elasticity tensor is obtained by push forward procedure [10]. 

But, it is preferred to develop an explicit form of spatial 

elasticity tensor to facilitate its implementation in deformed 

configuration [11]. Therefore, the main interest of this paper 

it to develop the formulations of the internal balance spatial 

elasticity tensor. An internal balance constitutive model is 

introduced. The calculation of spatial elasticity tensor for 

simple shearing load is chosen to verify the correctness of 

new formulations.  

 

Internally Balanced Formulations 

The hyperelastic internal balance formulations using 

principal stretches [12] is briefly reviewed in this section. 

Principal stretches 𝜆𝑎  of 𝑪 =  𝑭𝑻𝑭  are multiplicatively 

decomposed  such as: 

𝜆𝑎 = �̂�𝑎�̆�𝑎 (2) 

Where �̂�𝑎 and �̆�𝑎 are the principal stretches of �̂� =  �̂�𝑻�̂� and 

�̆� =  �̆�𝑻�̆� , respectively. In this manuscript all subscript 

indices are equal to 1,2,3. The constitutive model has the 

form of Φ(�̂�𝑎, �̆�𝑎). The principal component of second Piola 

– Kirchhoff stress 𝑆𝑎 is given by: 

𝑆𝑎 =  
�̂�𝑎

𝜆𝑎
2

𝜕Φ

𝜕�̂�𝑎

=
1

𝜆𝑎
2

𝜕Φ

𝜕ln�̂�𝑎

  
(3) 

       

The principal component of the internal balance tensor Ψ𝑎 is 

given as: 

Ψ𝑎 =  
1

�̆�𝑎

𝜕Φ

𝜕�̆�𝑎

−
�̂�𝑎

�̆�𝑎
2

𝜕Φ

𝜕�̂�𝑎

=
1

�̆�𝑎
2
(

𝜕Φ

𝜕ln�̆�𝑎

−
𝜕Φ

𝜕ln�̂�𝑎

) 
(4) 

It is worth to mention here that the second Piola – Kirchhoff 

stress 𝑺 is derived by minimizing the total energy w.r.t. 𝑪 at 
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fixed �̆� while the internal balance tensor 𝚿 is achieved by 

minimizing the total energy w.r.t. �̆� at fixed 𝑪.  

The internal balance treatment has a condensed material 

elasticity tensor [13]. It is reformulated using principal 

stretches in [9]. Using Voigt notation, the condensed material 

elasticity tensor 𝓒 in principal directions is structured as: 

[𝓒] =  [
[𝓒𝑫] 0

0 [𝓒𝑶]
] 

(5) 

Where: 

[𝓒𝑫] = [
𝜕𝑆𝑎

𝜕𝐸𝑏

] − [
𝜕𝑆𝑎

𝜕�̆�𝑏

] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
𝜕Ψ𝑎

𝜕𝐸𝑏

] (6) 

[𝓒𝑶] = [
𝑆𝑎 − 𝑆𝑏

2(𝐸𝑎 − 𝐸𝑏)
] − [

𝜕𝑆𝑎

𝜕�̆�𝑏

] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
Ψ𝑎 − Ψ𝑏

2(𝐸𝑎 − 𝐸𝑏)
] (7) 

Where 𝑰 is the identity tensor. The terms 𝐸𝑎  and �̆�𝑎  are the 

principal components of 𝑬 and �̆�, respectively, that are 2𝑬 =
𝑪 − 𝑰, 2�̆� = �̆� − 𝑰 and. It is recommended to review [9] for 

further details about the definition of the terms in (6) and (7). 

The spatial elasticity tensor has several definitions. It is given 

as a push forward of 𝓒 [10, 14], then the condensed spatial 

elasticity tensor 𝓓 becomes: 

𝒟𝑎𝑏𝑐𝑑 = 𝜆𝑎𝜆𝑏𝜆𝑐𝜆𝑑𝒞𝑎𝑏𝑐𝑑  (8) 

      

It can also be defined as a Piola transformation of 𝓒 [15, 16] 

that defines the condensed spatial elasticity 𝓗 as: 

ℋ𝑎𝑏𝑐𝑑 = 𝐽−1𝜆𝑎𝜆𝑏𝜆𝑐𝜆𝑑𝒞𝑎𝑏𝑐𝑑  (9) 

Where 𝐽 = det 𝑭 = 𝜆1𝜆2𝜆3 . Observe that 𝓓  is often used 

with Kirchhoff stress 𝝉 while 𝓗 is used with Cauchy stress 𝝈 

hence 𝝈 = 𝐽−1 𝝉 and 𝓗 = 𝐽−1𝓓.  

Condensed Spatial elasticity 

An internal balance explicit formulation of condensed spatial 

elasticity tensor 𝓓  is developed following the leads of 

Crisfield [10]. The principal component of Kirchhoff stress 

𝜏𝑎 is defined by pushing forward of (3):  

𝜏𝑎 = 𝜆𝑎
2  𝑆𝑎 = �̂�𝑎

𝜕Φ

𝜕�̂�𝑎

= 
𝜕Φ

𝜕ln�̂�𝑎

 (10) 

The derivative of 𝑆𝑎 w.r.t. 𝐸𝑏 at fixed �̆�𝑏  can be achieved it 

terms of 𝜏𝑎 by differentiating 𝑆𝑎 = 𝜏𝑎/𝜆𝑎
2  such as: 

𝜕𝑆𝑎

𝜕𝐸𝑏

=
1

𝜆𝑎
2

𝜕𝜏𝑎

𝜕𝐸𝑏

−
2

𝜆𝑎
4
𝜏𝑎𝛿𝑎𝑏 

=
1

𝜆𝑏𝜆𝑎
2

𝜕𝜏𝑎

𝜕𝜆𝑏

+
�̂�𝑏

𝜆𝑏
2𝜆𝑎

2

𝜕𝜏𝑎

𝜕�̂�𝑏

−
2

𝜆𝑎
4
𝜏𝑎𝛿𝑎𝑏 

=
1

𝜆𝑏
2𝜆𝑎

2
(

𝜕𝜏𝑎

𝜕 ln 𝜆𝑏

−
𝜕𝜏𝑎

𝜕 ln �̂�𝑏

) −
2

𝜆𝑎
4
𝜏𝑎𝛿𝑎𝑏 

(11) 

Whre 𝛿𝑎𝑏 is Kronecker delta. The derivative of 𝑆𝑎 w.r.t. �̆�𝑏  at 

fixed 𝐸𝑏 becomes: 

𝜕𝑆𝑎

𝜕�̆�𝑏

=
1

𝜆𝑎
2

𝜕𝜏𝑎

𝜕�̆�𝑏

=
1

�̆�𝑏𝜆𝑎
2

𝜕𝜏𝑎

𝜕�̆�𝑏

+
�̂�𝑏

�̆�𝑏
2𝜆𝑎

2

𝜕𝜏𝑎

𝜕�̂�𝑏

 

=
1

�̆�𝑏
2𝜆𝑎

2
(

𝜕𝜏𝑎

𝜕 ln �̆�𝑏

−
𝜕𝜏𝑎

𝜕 ln �̂�𝑏

) 

(12) 

Noting that (11) and (12) are achieved by making use of 

2𝐸𝑏 = 𝜆𝑎
2 − 1 and 2�̆�𝑏 = �̆�𝑎

2 − 1. Further details concerning 

the derivatives of the decomposed principal stretches �̂�𝑎 and 

�̆�𝑎 w.r.t. 𝐸𝑎 and �̆�𝑏  can be reviewed in [9]. 

The condensed spatial elasticity  𝓓  is structured in Voigt 

notation as: 

[𝓓] =  [
[𝓓𝑫 ] 0

0 [𝓓𝑶]
] (13) 

 Pushing forward of (6) provides the matrix [𝓓𝑫 ]  
 

 

[𝓓𝑫 ] = [𝜆𝑎
2𝜆𝑏

2𝒞𝐷 ]

=  [𝜆𝑎
2𝜆𝑏

2  
𝜕𝑆𝑎

𝜕𝐸𝑏

]

− [𝜆𝑎
2𝜆𝑏

2
𝜕𝑆𝑎

𝜕�̆�𝑏

] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
𝜕Ψ𝑎

𝜕𝐸𝑏

]  

(14) 

That is reformulated by using (2), (11) and (12) such as: 

[𝓓𝑫 ] =  [𝜆𝑏

𝜕𝜏𝑎

𝜕𝜆𝑏

+ �̂�𝑏

𝜕𝜏𝑎

𝜕�̂�𝑏

− 2𝜏𝑎𝛿𝑎𝑏]

− [�̂�𝑏
2 (�̆�𝑏

𝜕𝜏𝑎

𝜕�̆�𝑏

− �̂�𝑏

𝜕𝜏𝑎

𝜕�̂�𝑏

)] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
𝜕Ψ𝑎

𝜕𝐸𝑏

]  

=  [
𝜕𝜏𝑎

𝜕ln𝜆𝑏

+
𝜕𝜏𝑎

𝜕ln�̂�𝑏

− 2𝜏𝑎𝛿𝑎𝑏]

− [�̂�𝑏
2 (

𝜕𝜏𝑎

𝜕ln�̆�𝑏

− �̂�𝑏

𝜕𝜏𝑎

𝜕ln�̂�𝑏

)] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
𝜕Ψ𝑎

𝜕𝐸𝑏

] 

(15) 

Note that the last two terms of (15) are not affected by 

pushing forward procedure and they continue to have their 

original definition: 

𝜕Ψ𝑎

𝜕𝐸𝑏

= 
1

𝜆𝑏

𝜕Ψ𝑎

𝜕𝜆𝑏

+
�̂�𝑏

𝜆𝑏
2

𝜕Ψ𝑎

𝜕�̂�𝑏

= 
1

𝜆𝑏
2 (

𝜕Ψ𝑎

𝜕ln𝜆𝑏

+
𝜕Ψ𝑎

𝜕ln�̂�𝑏

) (16) 

𝜕Ψ𝑎

𝜕�̆�𝑏

= 
1

�̆�𝑏

𝜕Ψ𝑎

𝜕�̆�𝑏

−
�̂�𝑏

�̆�𝑏
2

𝜕Ψ𝑎

𝜕�̂�𝑏

= 
1

�̆�𝑏
2
(

𝜕Ψ𝑎

𝜕ln�̆�𝑏

+
𝜕Ψ𝑎

𝜕ln�̂�𝑏

) (17) 

The matrix [𝒟𝑂 ] is achieved by pushinf forward of (7)  

[𝓓𝑶] = [𝜆𝑎
2𝜆𝑏

2𝒞𝑂] = [
𝜆𝑎

2𝜆𝑏
2(𝑆𝑎 − 𝑆𝑏)

2(𝐸𝑎 − 𝐸𝑏)
]

− [𝜆𝑎
2𝜆𝑏

2
𝜕𝑆𝑎

𝜕�̆�𝑏

] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
Ψ𝑎 − Ψ𝑏

2(𝐸𝑎 − 𝐸𝑏)
] 

(18) 

That is manipulated by (10) to become: 

[𝒟𝑂] = [
𝜆𝑏

2𝜏𝑎 − 𝜆𝑎
2𝜏𝑏

𝜆𝑎
2 − 𝜆𝑏

2 ] − [𝜆𝑎
2𝜆𝑏

2
𝜕𝑆𝑎

𝜕�̆�𝑏

] [
𝜕Ψ𝑎

𝜕�̆�𝑏

]

−1

[
Ψ𝑎 − Ψ𝑏

2(𝐸𝑎 − 𝐸𝑏)
] (19) 

Calculating [𝓓𝑶] requires careful treatment. Note that the 

principal components Ψ𝑎 is set to zero Ψ1 = Ψ2 = Ψ3 = 0 to 

determine the decomposition of (2) that leads to: 

[
Ψ𝑎 − Ψ𝑏

2(𝐸𝑎 − 𝐸𝑏)
] = 0 (20) 

This simplifies (19) to: 

[𝒟𝑂] = [
𝜆𝑏

2𝜏𝑎 − 𝜆𝑎
2𝜏𝑏)

𝜆𝑎
2 − 𝜆𝑏

2 ] (21) 

However, the case of 𝐸𝑎 = 𝐸𝑏 gives 𝜏𝑎 = 𝜏𝑏 coupled with 

Ψ𝑎 = Ψ𝑏 = 0 leading to dividing zero by zero. To avoid that, 

the first and the fourth terms of (19) are calculated using the 

l’Hȏpital rule. Applying l’Hȏpital rule on the latter term 

gives: 

lim
𝐸𝑎→𝐸𝑏

Ψ𝑎 − Ψ𝑏

2(𝐸𝑎 − 𝐸𝑏)
=  

1

2
(
𝜕Ψ𝑎

𝜕𝐸𝑎

−
𝜕Ψ𝑏

𝜕𝐸𝑎

) 

=
1

2𝜆𝑎

(
𝜕Ψ𝑎

𝜕𝜆𝑎

−
𝜕Ψ𝑏

𝜕𝜆𝑎

) +
�̂�𝑎

2𝜆𝑎
2

(
𝜕𝛹𝑎

𝜕�̂�𝑎

−
𝜕𝛹𝑏

𝜕�̂�𝑎

) 

(22) 

Concerning the first term of (21), the l’Hȏpital rule is applied 

prior to push forward procedure. Let us start by applying 

l’Hȏpital rule gives: 

lim
𝐸𝑎→𝐸𝑏

S𝑎 − S𝑏

2(𝐸𝑎 − 𝐸𝑏)
=  

1

2
(
𝜕(𝜏𝑎/𝜆𝑎

2)

𝜕𝐸𝑎

−
𝜕(𝜏𝑏/𝜆𝑏

2)

𝜕𝐸𝑎

) (23) 
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=
1

2
(

1

𝜆𝑎
3

𝜕𝜏𝑎

𝜕𝜆𝑎

+
�̂�𝑎

𝜆𝑎
4

𝜕𝜏𝑎

𝜕�̂�𝑎

−
2𝜏𝑎

𝜆𝑎
4

)

−
1

2
(

1

𝜆𝑎𝜆𝑏
2

𝜕𝜏𝑏

𝜕𝜆𝑎

+
�̂�𝑎

𝜆𝑎
2𝜆𝑏

2

𝜕𝜏𝑏

𝜕�̂�𝑎

) 

Then pushing forward is performed: 

lim
𝐸𝑎→𝐸𝑏

𝜆𝑏
2𝜏𝑎 − 𝜆𝑎

2𝜏𝑏

𝜆𝑎
2 − 𝜆𝑏

2 = 𝜆𝑎
2𝜆𝑏

2 lim
𝐸𝑎→𝐸𝑏

S𝑎 − S𝑏

2(𝐸𝑎 − 𝐸𝑏)
 

=
1

2
(𝜆𝑎

𝜕𝜏𝑎

𝜕𝜆𝑎

+ �̂�𝑎

𝜕𝜏𝑎

𝜕�̂�𝑎

− 2𝜏𝑎)

−
1

2
(𝜆𝑎

𝜕𝜏𝑏

𝜕𝜆𝑎

+ �̂�𝑎

𝜕𝜏𝑏

𝜕�̂�𝑎

) 

(24) 

  
Logarithmic Material model 

A simple logarithmic constitutive model is given in [10], see 

equation 13.151, as: 

𝑊 = 
𝜇

2
(𝜆1

2 + 𝜆2
2 + 𝜆3

2) − 𝜇(ln 𝜆1 + ln 𝜆2 + ln 𝜆3) (25) 

Where 𝜇 is a material positive parameter. In analogy to (25), 

an internal balance constitutive model is proposed: 

Φ = 
𝜇(1 + 𝛽)

2
(�̂�1

2 + �̂�2
2 + �̂�3

2)

− 𝜇(1 + 𝛽)(ln �̂�1 + ln �̂�2 + ln �̂�3)

+
𝜇(1 + 𝛽)

2𝛽
(�̆�1

2 + �̆�2
2 + �̆�3

2)

−
𝜇(1 + 𝛽)

𝛽
(ln �̆�1 + ln �̆�2 + ln �̆�3) 

(26) 

Where 𝛽 is a material positive parameters that is tunes the 

weight of the multiplicative decomposed portions.  

A systematic procedure is followed to compute the internally 

balance spatial condensed elasticity tensor 𝓓. It is started by 

determining the essential derivatives and principal 

components such as: 

𝜕Φ

𝜕𝜆𝑎

= 0,  
𝜕Φ

𝜕�̂�𝑎

=
�̅�(�̂�𝑎

2 − 1)

�̂�𝑎

,
𝜕Φ

𝜕�̆�𝑎

=
�̅�(�̆�𝑎

2 − 1)

𝛽�̆�𝑎

 

𝑆𝑎 = 
�̅�(�̂�𝑎

2 − 1)

𝜆𝑎
2

,   𝜏𝑎 = �̅�(�̂�𝑎
2 − 1),    

Ψ𝑎 = 
�̅�

�̆�𝑎
2
(
(�̆�𝑎

2 − 1)

𝛽
− (�̂�𝑎

2 − 1))  

𝜕𝑆𝑎

𝜕𝜆𝑏

=
−2�̅�(�̂�𝑎

2 − 1)𝛿𝑎𝑏

𝜆𝑎
3

,   
𝜕𝑆𝑎

𝜕�̂�𝑏

=
2�̅��̂�𝑎𝛿𝑎𝑏

𝜆𝑎
2

,   
𝜕𝑆𝑎

𝜕�̆�𝑏

= 0 

𝜕𝜏𝑎

𝜕𝜆𝑏

= 0,
𝜕𝜏𝑎

𝜕�̂�𝑏

= 2�̅��̂�𝑎𝛿𝑎𝑏 ,
𝜕𝜏𝑎

𝜕�̆�𝑏

= 0   

𝜕Ψ𝑎

𝜕𝜆𝑏

= 0,
𝜕Ψ𝑎

𝜕�̂�𝑏

=
−2�̅��̂�𝑎𝛿𝑎𝑏

�̆�𝑎
2

,
𝜕Ψ𝑎

𝜕�̆�𝑏

=
2�̅�𝛿𝑎𝑏

�̆�𝑎
3

 

 

(27) 

Where �̅� =  𝜇(1 + 𝛽). Next, the matrix [𝒟𝐷] is determined 

by calculating the matrices presented in (15) and making use 

of (2) to obtain 

[𝜆𝑏

𝜕𝜏𝑎

𝜕𝜆𝑏

+ �̂�𝑏

𝜕𝜏𝑎

𝜕�̂�𝑏

− 2𝜏𝑎𝛿𝑎𝑏] = 2�̅�[𝛿𝑎𝑏] = 2�̅� [
1 0 0
0 1 0
0 0 1

] 

[�̂�𝑏
2 (�̆�𝑏

𝜕𝜏𝑎

𝜕�̆�𝑏

− �̂�𝑏

𝜕𝜏𝑎

𝜕�̂�𝑏

)] =  2�̅�[�̂�𝑎
4𝛿𝑎𝑏] = 2�̅� [

�̂�1
4 0 0

0 �̂�2
4 0

0 0 �̂�3
4

] 

[
𝜕Ψ𝑎

𝜕�̆�𝑏

] = 2�̅� [
(1 + �̂�𝑎

2)�̂�𝑎
4𝛿𝑎𝑏

𝜆𝑎
4

] 

= 2�̅�

[
 
 
 
 
 
 
 
(1 + �̂�1

2)�̂�1
4

𝜆1
4 0 0

0
(1 + �̂�2

2)�̂�2
4

𝜆2
4 0

0 0
(1 + �̂�3

2)�̂�3
4

𝜆3
4 ]

 
 
 
 
 
 
 

  

[
𝜕Ψ𝑎

𝜕𝐸𝑏

] = −2�̅� [
�̂�𝑎

4𝛿𝑎𝑏

𝜆𝑎
4

] = −2�̅�

[
 
 
 
 
 
 
 
�̂�1

4

𝜆1
4 0 0

0
�̂�2

4

𝜆2
4 0

0 0
�̂�3

4

𝜆3
4]
 
 
 
 
 
 
 

 (28) 

[𝓓𝑫] = 2�̅�

[
 
 
 
 
 
 
 
1 + �̂�1

2 + �̂�1
4

1 + �̂�1
2

0 0

0
1 + �̂�2

2 + �̂�2
4

1 + �̂�2
2

0

0 0
1 + �̂�2

2 + �̂�2
4

1 + �̂�3
2 ]

 
 
 
 
 
 
 

 

The matrix [𝓓𝑶] as defined in (21) becomes: 

[𝓓𝑶] = [
𝜆𝑏

2𝜏𝑎 − 𝜆𝑎
2𝜏𝑏)

𝜆𝑎
2 − 𝜆𝑏

2 ] = 

�̅�

[
 
 
 
 
 

𝑐0

𝜆1
2 − 𝜆2

2 0 0

0
𝑐1

𝜆2
2 − 𝜆3

2 0

0 0
𝑐2

𝜆1
2 − 𝜆3

2]
 
 
 
 
 

 

(29) 

Where 𝑐0 = 𝜆2
2(�̂�1

2 − 1) − 𝜆1
2(�̂�2

2 − 1), 𝑐1 = 𝜆3
2(�̂�2

2 − 1) −

𝜆2
2(�̂�3

2 − 1) and 𝑐2 = 𝜆3
2(�̂�1

2 − 1) − 𝜆1
2(�̂�3

2 − 1) 

Demonstration: Simple Shear 

The deformation of simple shearing is governed by 𝑭 = 𝑰 +
𝛾 𝒆𝟏 ⊗ 𝒆𝟐 [17] where 𝛾 is the amount of shear that is related 

to shear angle 𝜃  by 𝛾 = tan 𝜃 . At 𝜃 =  𝜋/4 , the principal 

stretches 𝜆𝑎 of 𝑪 becomes: 

𝜆1 =  1.6180,    𝜆2 =  0.6180,     𝜆3 =  1 (30) 

 Then, the scalar internal balance equations Ψ𝑎 = 0 must be 

solved for given 𝛽  and 𝜆𝑎  to determine the decomposed 

principal stretches (2). This coupling generates the following 

system of equations: 

𝜆1 = �̂�1�̆�1,   𝜆2 = �̂�2�̆�2,    𝜆3 = �̂�3�̆�3, 

(�̆�1
2 − 1)

𝛽
− (�̂�1

2 − 1) = 0,   

(�̆�2
2 − 1)

𝛽
− (�̂�2

2 − 1) = 0,   

(�̆�3
2 − 1)

𝛽
− (�̂�3

2 − 1) = 0 

(31) 

In case 𝛽 = 1, an analytical solution is obtained such as: 

�̆�𝑎 = �̂�𝑎 = √𝜆𝑎 ⟹ �̆�1 = �̂�1 =  1.2720,  

�̆�2 = �̂�2 =  0.7862,     �̆�3 = �̂�3 =  1 
(32) 

Given 𝜇 = 1, the condensed material elasticity tensor (5) is 

calculated:  

[𝓒𝑫] =  [
1.1672 0 0

0 33.889 0
0 0 6

],   

[𝓒𝑶] =  [
1.1056 0 0

0 3.2361 0
0 0 0.2918

] 

 

(33) 
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The standard procedure to obtain condensed spatial elasticity 

is to push forward (33) by applying (8) such as: 

[𝓓𝑫]𝑠𝑡𝑎𝑛𝑑 = [
8 0 0
0 4.9443 0
0 0 6

], 

[𝓓𝑶]𝑠𝑡𝑎𝑛𝑑 = [
1.1056 0 0

0 1.2361 0
0 0 0.76393

] 

(34) 

The condensed spatial elasticity tensor can now be explicitly 

determined using the developed new formulation as presented 

in (28) and (29): 

[𝓓𝑫]𝑛𝑒𝑤 = [
8 0 0
0 4.9443 0
0 0 6

], 

[𝓓𝑶]𝑛𝑒𝑤 = [
1.1056 0 0

0 1.2361 0
0 0 0.76393

] 

(35) 

Reviewing (34) and (35), the correctness of the new 

formulation is confirmed. It is worth to mention that the 

spatial elasticity tensor in base frame 𝓓𝑩 can be calculated 

via: 

𝒟𝑖𝑗𝑘𝑙
𝐵 = 𝑄𝑖𝑎𝑄𝑗𝑏𝑄𝑘𝑐𝑄𝑙𝑑𝒟𝑎𝑏𝑐𝑑 (36) 

Where 𝑸 is an orthogonal tensor contains the eigenvectors of 

𝑩 = 𝑭𝑭𝑻. 

Conclusion  
An Explicit formulation is developed to determine the 

condensed spatial elasticity tensor using principal stretches. 

This is an equivalent procedure to standard procedure that is 

based on determining the condensed material elasticity tensor 

then applying push forward procedure. A significant 

development is introduced for the terms related to principal 

component of second Piola – Kirchhoff stress 𝑆𝑎 while the 

terms related to Ψ𝑎  kept their original definitions. The new 

formulation of the condensed spatial elasticity tensor 

becomes dependent on principal component of Kirchhoff 

stress 𝜏𝑎 in addition to Ψ𝑎. The formulations of material and 

spatial elasticity tensors are extended by introducing the 

derivatives in terms of natural logarithmic of principal 

stretches. A simple internally balanced logarithmic 

constitutive model is introduced. It is demonstrated that the 

calculated condensed spatial elasticity tensor for simple 

shearing using the new formulation is equal to calculated 

spatial elasticity tensor by standard pushing forward of 

material elasticity tensor which confirmed the correctness of 

the new formulation.  

Future work 
Currently, further development is in progress to introduce  an 

explicit formulation of the spatial condensed elasticity tensor 

for decoupled strain energy function which will pave way to 

implement more advanced material models. 
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