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ABSTRACT

An ongoing research has applied arguments of calculus of variations to the portions of the
deformation gradient multiplicative decomposition. This internally balanced treatment has a
condensed material elasticity tensor that is formulated in terms of decomposed principal stretches.
This work provides an explicit formulation to determine the condensed spatial elasticity tensor.
The explicit formulation introduces an alternative procedure that is equivalent to pushing forward
of the condensed material elasticity tensor. A demonstration is presented using an internal balance
logarithmic constitutive model. A case study of simple shearing verifies the correctness of the new
formulation.
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Introduction
Finite deformation often applies deformation gradient
multiplicative decomposition

Internally Balanced Formulations

The hyperelastic internal balance formulations using
F=FF (1) principal stretches [12] is briefly reviewed in this section.

That is implemented to model advance aspects of Principal stretches 4, of €= F'F are multiplicatively

deformation in abroad spectrum of applications [1-6]. A new ~ decomposed such as: L

treatment of hyperelasticity [7,8] applies the arguments of Ao = Aahq )

calculus of variations to both decomposed portions. This  Where A, and 1, are the principal stretches of € = FTF and

provides the stress equations of equilibrium and an internally
balanced equation which is used to determine the
decomposed portions of F. Recently, the material elasticity
tensor is formulated using principal stretches of decomposed
portions in the reference configuration [9]. Then, the spatial
elasticity tensor is obtained by push forward procedure [10].
But, it is preferred to develop an explicit form of spatial
elasticity tensor to facilitate its implementation in deformed
configuration [11]. Therefore, the main interest of this paper
it to develop the formulations of the internal balance spatial
elasticity tensor. An internal balance constitutive model is
introduced. The calculation of spatial elasticity tensor for
simple shearing load is chosen to verify the correctness of
new formulations.

C = FTF, respectively. In this manuscript all subscript
indices are equal to 1,2,3. The constitutive model has the
form of ®(4,, 1,). The principal component of second Piola
— Kirchhoff stress S, is given by:

1,00 1 00 (3)
2291, 7220Ind,

a =

The principal component of the internal balance tensor ¥, is
given as:

a =

1 00 iaaq>_1<ac1> aq>> (4)
1,01, X201, A2\dlni, alnd,

It is worth to mention here that the second Piola — Kirchhoff
stress S is derived by minimizing the total energy w.r.t. C at
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fixed € while the internal balance tensor W is achieved by
minimizing the total energy w.r.t. C at fixed C.

The internal balance treatment has a condensed material
elasticity tensor [13]. It is reformulated using principal
stretches in [9]. Using Voigt notation, the condensed material
elasticity tensor € in principal directions is structured as:

T fes] 0 (5)
e1= 7 [Co]]
Where:
Col = aEb [aEb] [aE,,] [aEb ©)
~ Y-,
[Col = [2<E 5] [aEb] [aEb] 2 Ey

Where I is the identity tensor. The terms E, and E, are the
principal components of E and E, respectively, that are 2E =
C—1I,2E = C —1Iand. It is recommended to review [9] for
further details about the definition of the terms in (6) and (7).
The spatial elasticity tensor has several definitions. It is given
as a push forward of € [10, 14], then the condensed spatial
elasticity tensor D becomes:

Dapca = AaApAcAaCabea (8)

It can also be defined as a Piola transformation of € [15, 16]
that defines the condensed spatial elasticity H as:
Habcd = ]_1lalblcldcabcd (9)
Where | = det F = ;4,45 . Observe that D is often used
with Kirchhoff stress T while Z is used with Cauchy stress o
henceo =/ 1tand H = J~1D.
Condensed Spatial elasticity
An internal balance explicit formulation of condensed spatial
elasticity tensor D is developed following the leads of
Crisfield [10]. The principal component of Kirchhoff stress
7, is defined by pushing forward of (3):
ta= S, = A2 = 0%
@ tera T a5, dlnd,
The derivative of S, w.r.t. E, at fixed E, can be achieved it
terms of 7, by differentiating S, = t,,/A2 such as:

(10)

S, 101,
9E, - E@ - ETagab
1 0dt, A, 01, 2
= 202, +A§A§a_i,,_ﬁf“5“” (11)

1 Jdt, Jdt, 2
2R (a i, dln ;ib) ~ 74 Tadav
Whre &, is Kronecker delta. The derivative of S, w.r.t. E, at
fixed E},, becomes:
s, 101,

0E,  A20E,

1 ara+ 1, 01,
220, A2)Z204,

1 (6ra 01, )
- 222\alnd, alni,

Noting that (11) and (12) are achieved by making use of
2E, = 22 — 1 and 2E, = A2 — 1. Further details concerning
the derivatives of the decomposed principal stretches 4, and
A, w.rt. E, and E, can be reviewed in [9].

The condensed spatial elasticity D is structured in Voigt
notation as:

(12)

[Dp] O ]
D] = |
PI=1"0" )
Pushing forward of (6) provides the matrix [Dp |

(13)

[DD] = [/1121/1%60]
[/12& as,
b OE, B (14)
|z 2S,] [0¥, 0¥,
Y oE,| | oE, 0E,
That is reformulated by using (2), (11) and (12) such as:
D, ] [AaT“ +2,9% 5]
= T,
D b alb b a/,{b a%ab
a
/117 Ab
- aab)] [aEb
01, 01, S ] (15)
=~ — 4T,04
dlnl, ' dlnd, b
5
- /1b -
dlnA,
el
alnlb oE, aEb

Note that the last two terms of (15) are not affected by
pushing forward procedure and they continue to have their
original definition:

v, 1v¥, /1,, oy, vy, vy,
= — +— (16)
8Eb /‘lb a/‘lb /1 alb AZ alnlb Olnlb
oY, 10v, ib v, oy, vy,
- = T T T S, T T — +—F (17)
aEb /‘lb a/‘lb /‘le 6/1,, AZb alnlb alnlb
The matrix [D, ] is achieved by pushinf forward of (7)
A22%(S, — Sp)
[Do] = [A525C0] = [—
Y, -y,
2z [
aEb aEb 2(E, — Ep)
That is manipulated by (10) to become:
A%Ta AZTb a lpa — lpb
- 19
Pol = [ ] [ ‘ ”aEb] [aEb] 2(Ea—Eb)] 9

Calculating [DO] requires careful treatment. Note that the

principal components W, issetto zero¥; =¥, =¥; =0to
determine the decomposition of (2) that leads to:
LIJa - l'I"b
e | = (20)
2(Eq — Ep)
This simplifies (19) to:
A%)Ta B A%zrb)
Dol = |1——5— 21
[Do] [ T ] (21)

However, the case of E, = E}, gives t, = 1, coupled with
Y, = ¥, = 0 leading to dividing zero by zero. To avoid that,
the first and the fourth terms of (19) are calculated using the
I’Hopital rule. Applying I’Hdpital rule on the latter term
gives:

I Y, - 1 ((?‘Pa O‘Pb)
EaoFy 2(Eq — Ep)  2\0E, OE,
1 ((wa alpb)+ Aa (alpa alpb>
T 2,\01, 8A,) 222\8i, oA,

Concerning the first term of (21), the I’Hopital rule is applied
prior to push forward procedure. Let us start by applying
I’Hopital rule gives:
Sq—S 0(1,/2%) 9(tp/A
lim e~ Sp _ (ta/2a)  0(tp/23) 23)
Ea~Ep 2(E, — Ep) 2\ 0E, dE,

(22)
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Thoi, %
1/ 1 0t 1, 01,
2 (mﬁ Ve ﬁ)
Then pushing forward is performed:

_1(/1 07,
T2\ o,

1,07, 21a>

A%Ta - )lngb S - Sb
im ———— = 124} lim —————
Eal—rgb Az — /'l%, @ bEal—rgb 2(E, — Ep)
_ 13,0y g %y 24
- 2 a a/‘{a a aia Ta ( )

1 1 61'1,_'_jL aty,
2\""92, "“oai,

Logarithmic Material model
A simple logarithmic constitutive model is given in [10], see
equation 13.151, as:

W= g(ﬂi +22+22) —p(nA, +1ndy +1nds)  (25)

Where u is a material positive parameter. In analogy to (25),
an internal balance constitutive model is proposed:
A +B) o oy s
e @+ i+ 4)
—u(1+ ﬁ)(ln/T1 +Ind, + lni3)
1+
N p(1+p)
2p
p(l+

—Tﬁ)(lnil+lniz+lni3)

Where g is a material positive parameters that is tunes the
weight of the multiplicative decomposed portions.

A systematic procedure is followed to compute the internally
balance spatial condensed elasticity tensor D. It is started by
determining the essential derivatives and principal
components such as:

D =

B2+ 3+ 72) (26)

(1 + A2)A% 0
Vbt
(1+13)14
2
0 0 (1+13)A%
e
_ii -
/1—‘11 0 0
v, 1S an PES
=202 =-2a 2 2
aEb] [ 2 #O 7 0 (28)
e
0 0 /1_3_
1+ 13 + A% 0 0
1+ 42
1+ 2+ 14
Dpl =24 _—
[Dp] u 1+ A%
0 14+ 224+ 24
i 1+ A
The matrix [D,] as defined in (21) becomes:
Ai‘[a - Azzzrb)
D =l | =
P 5=
0
- 0 0
2 __ 92
A =25 . 29)
-_ 0 -
H VR
C2
0 0 e
H-2

Where ¢y = 13( ~ 1) = (% ~ 1) c; = (13 - 1) -
B -1)andc, =25(% - 1) - (% - 1)

(32 _ =32 _
2% =0, 6?) = '“(’1‘171)6_? = M Demonstration: Simple Shear
02, 0Aq Ag 04q BAa The deformation of simple shearing is governed by F = I +
B (12 - 1) _ oA —1 y e Q e, [17] where y is the amount of shear that is related
Sa = 2z o= A4 - 1), to shear angle 8 by y =tan6. At 6 = m/4, the principal
(2, stretches A, of C becomes:
po= Vﬁ M_ (12 -1) A = 16180, 1, = 0.6180, A;=1 (30)
“n B ¢ Then, the scalar internal balance equations ¥, = 0 must be
a2 _a (27)  solved for given g and 4, to determine the decomposed
05a - M’ 6& - M, ai =0 principal stretches (2). This coupling generates the following
A, 23 oA, 2% al, system of equations:
aﬁ =0, a& = Zﬁiasabv a_‘l;a =0 A= );111, Ay = Ay, A3 = A3,
02y ol 0, B-1 .
W _ o Va2l 0¥ _ 2w 5 - (@-y=o
or, a4, 2 al, yEl (#-1) (Z-1)=0 (31)
_ . _ B '
Where g = u(1 + B). Next, the matrix [Dp] is determined (/Tz _ 1) X
by calculating the matrices presented in (15) and making use S LA (A% - 1) =0
of (2) to obtain B . L . ]
3 P 1 0 0 In case § = 1, an analytical solution is obtained such as:
T N T v a > a
[zb ACHY RO zTaaab] — 21[6] = 2 [0 1 0] Ja=la=\Ta =1 =1 = 12720, 2
b0k lo o 1 L=1,= 07862, Is=A;=1
3 3 A4 0 0 Given u = 1, the condensed material elasticity tensor (5) is
[’ii (Zb SAL I A &)] = 2f[At8.] = 2|0 A4 0 calculated:
04y 04y 0 0 M 11672 0 0
PO 3 Cpl = . )
0% _, [(1+ Ak Col=] 0 33889 0
95, 2% 11056 0 0 (33)
[Col=] 0 32361 0
0 0 0.2918
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The standard procedure to obtain condensed spatial elasticity
is to push forward (33) by applying (8) such as:
8 0 0

[DD]stand = |0 4.9443 0|,
0 0 6
1.1056 0 0 (34)
[Dolstana = 0 1.2361 0
0 0 0.76393

The condensed spatial elasticity tensor can now be explicitly
determined using the developed new formulation as presented
in (28) and (29):

8 0 0
[Dplew = |0 49443 0|,
o 0 6
11056 0 0 (35)
[Dolnew = 0 1.2361 0
0 076393

0

Reviewing (34) and (35), the correctness of the new
formulation is confirmed. It is worth to mention that the
spatial elasticity tensor in base frame D® can be calculated
via:

Df}m = QiankachdDabcd (36)
Where Q is an orthogonal tensor contains the eigenvectors of
B = FFT.
Conclusion
An Explicit formulation is developed to determine the
condensed spatial elasticity tensor using principal stretches.
This is an equivalent procedure to standard procedure that is
based on determining the condensed material elasticity tensor
then applying push forward procedure. A significant
development is introduced for the terms related to principal
component of second Piola — Kirchhoff stress S,while the
terms related to W, kept their original definitions. The new
formulation of the condensed spatial elasticity tensor
becomes dependent on principal component of Kirchhoff
stress 7, in addition to W,. The formulations of material and
spatial elasticity tensors are extended by introducing the
derivatives in terms of natural logarithmic of principal
stretches. A simple internally balanced logarithmic
constitutive model is introduced. It is demonstrated that the
calculated condensed spatial elasticity tensor for simple
shearing using the new formulation is equal to calculated
spatial elasticity tensor by standard pushing forward of
material elasticity tensor which confirmed the correctness of
the new formulation.
Future work
Currently, further development is in progress to introduce an
explicit formulation of the spatial condensed elasticity tensor
for decoupled strain energy function which will pave way to
implement more advanced material models.
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