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The electrocardiogram (ECG) is regarded as an essential diagnostic tool, as it serves as a
representation of the cardiac electrical activity and is extensively employed in the diagnosis of
cardiovascular diseases, as well as in assessing the overall health of the heart. ECG signals yield
critical insights into the functional condition of the heart and its associated parameters; however,
these signals are frequently vulnerable to distortion caused by various types of noise. Such noise
includes powerline interference, baseline wandering, electromyographic noise (EMG noise), and
artifacts resulting from electrode movement. Powerline interference is characterized by a 50 Hz
frequency component, and its amplitude typically constitutes 50% of the peak-to-peak amplitude
of the ECG signal. This interference predominantly arises from electromagnetic disturbances
associated with power lines. The objective of this study is to process the ECG signal utilizing
MATLAB. We employed a Notch filter for the initial preprocessing of the signal and applied two
families of wavelets, namely Symlets and Biorthogonal wavelets, to mitigate the impact of
powerline interference on the ECG signal. Subsequently, we compared the efficacy of these
wavelet families in the signal processing framework by evaluating the Signal-to-Noise Ratio
(SNR) and the Signal Correlation Value (SCV). The findings demonstrated that the Biorthogonal
wavelet family outperformed the others, as the application of the Biorthogonal wavelet 2.4 resulted
in a Signal-to-Noise Ratio of SNR=20.2553 dB and a Signal Correlation Value of SCV=0.9956.
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Introduction
An electrocardiogram (ECG)

represents a documented

compromised by various forms of noise, including power line

manifestation of the electrical activity of the heart, serving as
a prevalent diagnostic tool for heart disease. ECG signals
yield critical insights regarding the operational conditions of
the heart and the circulatory system. The frequency spectrum
of an ECG signal typically spans from 0.05 to 100 Hz, with a
dynamic range between 1 to 10 mV; given its nature as a
weak non-static signal, ECG signals are frequently

interference, basic roaming (which encompasses electrode
contact noise and movement), and electromyographic
artifacts [1].

Power line interference constitutes a primary source of noise
that often contaminates ECG signals, characterized by a 60
Hz (or 50 Hz in certain regions) sinusoidal waveform and its
harmonics; this phenomenon is predominantly attributed to
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electromagnetic interference generated by power lines, as
well as electromagnetic fields emanating from proximate
electrical apparatuses such as air conditioning units,
elevators, and X-ray machines that exert considerable current
draw on the power grid, consequently inducing 50 Hz signals
within the input circuits of cardiac mapping devices.
Additionally, the stray effects of alternating current fields
resulting from cable loops and inadequate grounding of either
the patient or the ECG apparatus further exacerbate this issue,
wherein the presence of such extraneous interferences poses
significant challenges in the accurate diagnosis of ECG
readings. the mitigation of power line interference (PLI) from
electrocardiogram (ECG) signals presents a significant
challenge, as the frequency of power line noise resides within
the overlapping frequency spectrum of both ECG and PLI
signals [2]. Consequently, it is essential to implement
appropriate signal processing techniques to proficiently
eradicate PLI noise from ECG recordings. Moreover, the
analysis of high-resolution ECG signals that are adversely
affected by noise interference is of considerable importance,
as the elimination of noise represents a fundamental
challenge within the field of signal processing [3]. A range of
diverse methodologies is utilized for the purpose of
mitigating noise in electrocardiographic recordings.

In the study [4], eighteen ECG signals were extracted from
the dominant noise using thirty-two discrete waveform
transforms (DWTSs). This method was used to evaluate the
optimal performance in canceling power line interference.
For comparison, the signals were also denoised using a
conventional score filtering methodology, with the resulting
data evaluated according to three performance metrics:
signal-to-noise ratio (SNR), mean square error (MSE), and
signal correlation value (SCV).

The subsequent study [5], sourced the reference ECG signal
data from the MIT-BIH database. A multitude of filtering
methodologies, including discrete wavelet transform (DWT),
normalized least mean square (NLMS) filter, finite impulse
response (FIR) filter, and infinite impulse response (lIR)
filter, were employed in this study to mitigate the noise
contaminating the compromised electrocardiogram (ECG)
signal caused by (PLI). Subsequently, a comparative analysis
of methodologies was conducted to identify the most
efficacious strategy for mitigating distortion in a
compromised ECG signal. The parameters employed for this
evaluation encompassed Mean Squared Error (MSE), Mean
Absolute Error (MAE), Signal-to-Noise Ratio (SNR), and
Peak Signal-to-Noise Ratio (PSNR). An exemplary noise
reduction algorithm demonstrates elevated values for SNR
and PSNR, in conjunction with diminished values for MSE
and MAE.

Electrocardiogram signal

Upon acquisition of the electrocardiographic (ECG) signal
via an ECG apparatus, the amplitude of the signal, measured
in millivolts, is graphically represented in conjunction with
the temporal dynamics of the heart's electrical activity.
Electrodes affixed to the dermal layer detect minuscule
electrical variations, which adversely impact the normative
ECG waveform and result in complications such as
fibrillation, tachycardia, and inadequate perfusion in the
coronary arteries. A Holter monitor may additionally be
utilized to document the electrical phenomena associated
with the cardiac muscle. An electrocardiogram, often denoted
as ECG, constitutes a straightforward diagnostic procedure
utilized to assess cardiac rhythm. Sensors or conductive

pathways are strategically positioned over the thorax, upper
limbs, and lower limbs for a brief duration to capture the
electrical signals emanating from the heart. The cardiologist
meticulously scrutinizes these signals to ascertain any
anomalies. An electrocardiogram is distinct from an
echocardiogram, which represents a diagnostic examination
focused on the structural and functional aspects of the heart.
Normal electrical impulses facilitate the contraction of
various segments of the heart, with alterations in these
impulses serving as indicators of specific pathological
conditions impacting cardiac function [6]. Figurel delineates
the principal waves observable in the ECG output. There
exist five primary waves manifested in the ECG results: “P,
Q, R, S, T,” sequentially. Each wave signifies a particular
moment in the cardiac cycle during which electrical current
traverses from the atria to the ventricles, while the intervals
between the waves denote the duration required for the
current to propagate from one point to another [7]. Figure (2)
also illustrates the most critical segment of the ECG, namely
the QRS complex, whose morphology and timing vyield
substantial statistics and insights regarding the heart's
operational efficacy [2]. A conventional QRS detection
algorithm typically encompasses two fundamental phases:
preprocessing and resolution. The former exclusively entails
a specific form of filtering [8], while the latter endeavors to
identify QRS complexes within the ECG signal.
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Fig. 1: ECG wave [9]

Power line interference noise

The power line operates at a frequency of 50 Hz, with the
amplitude measured at 50% of the peak-to-peak
electrocardiogram (ECG) amplitude [10]. Interference
primarily arises from electromagnetic interference emanating
from the power line, the electromagnetic fields (EMF)
produced by nearby devices, the stray effects of alternating
current (AC) fields due to cable loops, or through inadequate
grounding of the patient or the ECG apparatus. Electrical
devices generate 50 Hz signals within the input circuits. This
phenomenon is particularly evident with ECG devices
associated with air conditioning units, elevators, and X-ray
machines that draw substantial current from the power line
[11]. The electromagnetic fields produced by the power line
represent a prevalent source of noise in the ECG, as well as in
any other bioelectrical signals recorded from the body's
surface. Such narrowband noise complicates the analysis and
interpretation of the ECG, as it renders the identification of
low-amplitude waveforms less reliable. Furthermore, it may
introduce artifacts in the form of spurious waveforms. It is
imperative to eliminate power line interference from ECG
signals due to its complete disruption of low-frequency ECG
waves, including the P wave and T wave [11]. Figure 2
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shows the Powerline Interference Noise
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Fig. 2: Powerline Interference Noise [12]

Methodology

The methodology adopted in this study begins with the
acquisition of an electrocardiogram (ECG) signal afflicted by
powerline interference, a prevalent concern attributed to
electromagnetic disturbances emanating from electrical
apparatus or inadequate grounding practices. To mitigate this
issue, an Infinite Impulse Response (IIR) Notch filter is
initially implemented to eliminate the constant 50 Hz
frequency component, ensuring minimal disruption to other
segments of the signal. This filtering procedure diminishes
the predominant noise, thereby establishing a more reliable
basis for ensuing signal analysis. The resultant filtered signal
is subsequently subjected to processing via the Discrete
Wavelet Transform (DWT), utilizing two distinct families of
wavelets: Symlets and Biorthogonal. Within the Biorthogonal
domain, the wavelet coefficients are employed to reconstruct
the signal, with the objective of achieving recovery with
minimal distortion. Conversely, in the Symlets domain, the
coefficients are utilized to derive performance metrics,
including Signal-to-Noise Ratio (SNR), Mean Squared Error
(MSE), and Signal Correlation Value (SCV). Upon the
completion of evaluations across both branches, the resultant
performance metrics of each wavelet family are meticulously
compared to ascertain which yields superior noise
attenuation. In light of these performance metrics, the
wavelet type deemed most effective for mitigating powerline
interference is identified. This culminates the methodology,
which is predicated on wavelet-based signal processing
methodologies to optimize ECG signal fidelity by reducing
distortion as illustrated in Figure 3.

Discrete Wavelet Transform (DWT)

bands and distinct intensities by examining the signal for
both detailed and approximate information, as elucidated in
the subsequent two equations: [13].

c{j+1}(k) =\sum_{m}L(z)(m — 2k)cj (1)
d_{j+ 1}(k) =\sum_{m}H(z)(m — 2k)cj (2)

The frequency of input signal is divided into frequency
packets corresponding to the packet width through the
utilization of the low and high-pass filters L(Z) and H(Z),
respectively. The output generated by these filters exhibits
half the frequency while retaining the sum of the samples
from the input signal; furthermore, the combined outputs
encapsulate the same frequency content as the input signal,
thereby resulting in a data quantity that is effectively doubled
[13], as illustrated in Fig. 4.

The original signal can be reconstructed utilizing the
composition of bank filters. During the composition process,
the signal is sampled in an upward vertical manner and
subsequently processed through the L(Z) and H(Z) filters.
The filters used in the synthesis process are derived from the

filters used in the analysis process, as they are combined with
the outputs of the synthesis filters to reconstruct the signal
y(K) [13] as shown in Fig. 5.
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Fig.3: Flowchart of the methodology
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The primary distinction between continuous wavelet
transforms and discrete wavelet transforms lies in the
capability to select a subset of the gradients and transitions
requisite for processing, rather than executing the
transformation across all gradients and transitions through
temporal interruptions in the signal. This transformation
yields a sufficient amount of information, with a reduction in
computational time while concurrently preserving the
fundamental information of the signal [14]. The wavelet
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transform family encompasses various types, including
Biorthogonal and Symlet, which are employed in this
research as illustrated in Figure 6.
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Results and discussion

The objective of the filtering procedure is to diminish the
noise levels within the signal, whilst concurrently ensuring
that there is no alteration or distortion to the original
waveform. The elimination of noise from the
electrocardiogram (ECG) represents a critical challenge
encountered by medical practitioners, as it is pivotal in the
accurate diagnosis of cardiac disorders. In this paper, a
simulation was performed to reduce the signal-to-noise ratio
of the ECG. This section describes the main findings. The
ECG signal, which exhibited power line interference noise,
commonly referred to as Powerline Interference, was
obtained as illustrated in Figure (7).
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Fig. 8: The signal generated by applying the IIR Notch filter
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Fig. 9: The reconstructed transactions in the case of sym2
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Fig. 7: ECG signal with noise (Powerline Interference)

To remove the noise from the ECG signal, an IIR notch filter
was used as it is considered one of the best filters capable of
producing a signal with higher contrast and clarity. Figure 8
shows the resulting signal after applying the 1IR notch filter.
e  Use wavelet symlets

Figure (9) illustrates the transactions that were reconstructed
subsequent to the application of wavelet analysis (sym2) to
the signal produced by the notch filter depicted in Figure (8),
wherein the discrete wavelet transform was employed on the
resultant signal from the filter.

Figure (10) shows the transactions that were reconstructed
using the sym4 wavelet and compare to Figure (9), which
shows the reconstructed transactions in the case of sym2.
Figure (11) displays the transactions that were reconstructed
employing the sym7 wavelet, in contrast to Figure (9), which
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Fig. 10: The reconstructed transactions in the case of sym4

represents the reconstructed transactions associated with
sym2, as well as Figure (10), which illustrates the
reconstructed transactions relevant to sym4.

Due to the unique features of each wavelet, determining
which one performed best in reconstructing the signal, as
shown in the earlier figures (9), (10), and (11), can be quite
difficult. Therefore, to facilitate comparison, we return to the
signal metrics that clarify how effective the wavelet is in
reconstructing the signal transactions. Additionally, the
examination was carried out in four separate levels or stages
to provide a more accurate time representation of the signal.
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Figure (12) displays the original signal, which is influenced
by noise from power line interference (PLI), alongside the
signal that was filtered using the discrete wavelet transform
(DWT) and then fitted to the transactions with the sym2
wavelet, which has proven successful in reconstructing the
transactions after analysis.
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Fig. 11: The transactions that were reconstructed in the case of

Figure (13) shows the coefficients that were restored after
conducting wavelet analysis (bior2.4) on the signal obtained
from the click filter illustrated in Figure (8), where the
discrete wavelet transform was performed on the signal
generated by the mentioned filter.
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Fig. 13: The transactions that were reconstructed in the case of
bior2.4

figure (14) presents the transactions that were reconstructed
utilizing the biorl.5 wavelet, and is to be compared with
Figure (13), which delineates the reconstructed transactions
in the context of bior2.4.
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Fig. 12: The original signal filtered using the sym2 wavelet

Table 1: Comparison of wavelet symlets

Wavelet Type SNR (dB) (SCV)
Sym2 18.8864 0.99391
Sym3 17.7606 0.99374
Sym4 18.4228 0.99312
Sym5 18.7137 0.99364
Sym6 18.3944 0.99314
Sym7 16.7191 0.98975
Sym8 18.3718 0.99315

whereas: SNR refers to the ratio of the original signal to the
noise present in the reconstructed signal. SCV denotes the
correlation coefficient that exists between the original and the
reconstructed signals.

This involves rebuilding the transactions after thorough
examination.

 Use Biorthogonal wavelets
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Fig. 14: The transactions that were reconstructed in the case of
biorl.5

Figure (15) exhibits the transactions that were reconstructed
through the implementation of the bior4.4 wavelet, and is to
be contrasted with Figure (13), which illustrates the
reconstructed transactions in the scenario of bior2.4, as well
as Figure (14), which displays the reconstructed transactions
in the instance of biorl.5.

Given the unique characteristics of each wavelet, it remains
challenging to ascertain which wavelet exhibited superior
performance in reconstructing the signal as evidenced by the
preceding figures (13), (14), and (15). Consequently, in the
evaluative process, we revert to the signal metrics, which
elucidate the wavelet that performs optimally among the
various wavelets in reconstructing the signal transactions.
The analysis was conducted in four stages or levels to acquire
the signal with enhanced temporal accuracy. Figure (16)
portrays the original signal, which is contaminated with
power line interference (PLI) noise, in conjunction with the
signal that underwent filtration through the application of the
discrete wavelet transform (DWT), and following the
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adjustment of the coefficients employing the bior2.4 wavelet,
which has demonstrated efficacy in reconstructing the
coefficients post-analysis.
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derived from the symlets and biorthogonal wavelet families.
It is observed that the biorthogonal wavelet family,
specifically the bior2.4 wavelet, exhibited superior
performance in signal reconstruction.

Table 3: Comparison between the best results of the symlets and

Biorthogonal wavelet families

-40

4000
time

8000

10000
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25

Wavelet Type SNR (dB) (SCV)

Biorl.3 17.153 0.99056
Biorl.5 16.563 0.98991
Bior2.2 19.126 0.99413
Bior2.4 20.255 0.99561
Bior2.6 19.531 0.99418
Bior3.5 17.253 0.99079
Bior3.7 17.424 0.99076
Bior4.4 19.973 0.99532
Bior5.5 19.602 0.99491
Bior6.8 18.858 0.99393

e Compare symlets and biorthogonal wavelets

Table (3) delineates a comparative analysis of the outcomes

Wavelet Type SNR (dB) (scv)
Sym2 18.8864 0.9939
Sym4 18.4228 0.99312
Sym5 18.7137 0.99364
Bior2.4 20.255 0.99561
Bior4.4 19.973 0.99532
Bior5.5 19.602 0.99491
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Fig. 17: The difference between the best results of wavelet families
for (SNR)
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Fig. 18: The difference between the best results of wavelet families
for (SCV)
Conclusions
In the realm of digital signal processing methodologies, the
fidelity of the reconstructed signal emerges as a paramount
consideration. The fidelity of the reconstructed signal must
exhibit no discernible deviation from that of the original
signal, and it is imperative that the signal is devoid of
extraneous noise. This objective is achieved through the
application of signal metrics, specifically the signal-to-noise
ratio (SNR) and the signal correlation value (SCV).
1- The Symlets wavelet demonstrates significant utility in the
analysis and reconstruction of the signal within the
framework of the discrete wavelet transform. At the sym?2
level, we achieved the optimal signal quality for the Symlets
wavelet, wherein the SNR value was recorded at 18.8864 dB,
accompanied by a signal correlation value of 0.9939.
2- The Biorthogonal wavelet exhibits commendable efficacy
in the analysis and reconstruction of the signal when
employed in the discrete wavelet transform. At the bior2.4
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configuration, we achieved the highest signal quality for the
Biorthogonal wavelet, where the SNR value was determined
to be 20.2553 dB, alongside a signal correlation value of
0.9956.

3- In the present investigation, we undertook the
processing of the signal and implemented a filtering
procedure to mitigate the inherent noise through the
discrete wavelet transform. Furthermore, we conducted
a comparative analysis of two distinct families of

discrete wavelet  transforms and subsequently
reconstructed the signal utilizing the discrete wavelet
transform, which is recognized for its superior

capabilities in both filtering and reconstructing the
signal, demonstrating its efficacy particularly as the
bior2.4  wavelet, which exhibited the most
distinguished performance.

Recommendations

1- Dealing with heart rate signals associated with other types
of noise, such as: EMG Noise and Electrode Motion
Artifacts.

2- Use another type of filter in the pre-treatment process,
such as: FIR Notch

3- Comparing other types of wavelet filters, such as: Haar
wavelet, Daubechies, Coiflets, etc.

4- Use real heart rate signals by dealing with one of the
centers specialized in heart rate signals.

5- Using compression as it removes unimportant or repetitive
details to reduce the size of the signal.
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