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ARTICLE HISTORY ABSTRACT
Received 05 January 2026 This study benchmarks edge-optimized deep learning models for real-time anomaly detection in
Revised 23 January 2026 resource-constrained loT environments using the RT-10T2022 dataset, which includes four benign
Accepted 26 January 2026 protocols and nine cyberattack types. Three architectures a quantized autoencoder (QAE), compact
Online 30 January 2026 LSTM, and lightweight Transformer were deployed on a Raspberry Pi 4 and evaluated on F1-
score, latency, model size, and energy per inference. The QAE achieved optimal performance with
KEYWORDS 98.7% F1-score, 142 KB memory footprint, 1.8 ms latency, and 4.2 mJ energy consumption,
Edge Al; outperforming alternatives under strict edge constraints. While the LSTM showed better recall on
10T security, anomaly detection; rare attacks and the Transformer captured long-range dependencies at higher computational cost,
Quantized autoencoder; the QAE delivered the best overall trade-off for deployable security. The work reframes model
Lightweight LSTM; selection around hardware-aware co-design rather than architectural complexity, demonstrating
distilled Transformer; that intelligently compressed, reconstruction-based approaches surpass heavier models in
RT-10T2022; efficiency and effectiveness. Findings provide a reproducible framework for low-latency, privacy-
Real-time intrusion detection. preserving intrusion detection in smart healthcare and industrial 10T, advocating a paradigm shift

toward minimal sufficiency over maximal capacity in edge Al design.
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Introduction Modern Internet of Things (IoT) ecosystems spanning smart
healthcare, industrial automation, and residential systems are
increasingly vulnerable to sophisticated cyber threats due to
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their distributed nature and limited built-in security [1].
Traditional cloud-based intrusion detection systems (IDS)
introduce unacceptable latency and privacy risks, prompting a
shift toward edge-native solutions. However, deploying deep
learning based IDS on resource-constrained edge devices
remains challenging due to strict limitations on memory (<512
MB), computational throughput, and energy budget. While
model compression techniques such as quantization, pruning,
and architectural distillation offer promising pathways,
empirical validation across diverse, real-world 10T traffic is
still scarce [2,3]. To address this gap, we present a hardware-
aware benchmark of three edge-optimized architectures
quantized autoencoder (QAE), compact LSTM, and
lightweight Transformer evaluated on the RT-10T2022 dataset,
which captures multivariate time-series traffic from real 10T
devices under nine contemporary attack vectors and four
benign protocols [4,5]. Unlike prior work that emphasizes
architectural novelty, this research study focuses on system-
level trade-offs between accuracy, inference latency, model
footprint, and energy consumption on a Raspberry Pi 4
platform. This approach reframes edge Al design around
deployability rather than complexity, demonstrating that
intelligently compressed models can achieve high detection
fidelity without sacrificing real-time performance. This
research provides a reproducible framework for low-latency,
privacy-preserving anomaly detection tailored to the
operational realities of edge computing environments. A
quantized autoencoder (QAE) trained for reconstruction-based
anomaly scoring,

A pruned as well as quantized LSTM for sequential pattern
recognition,

A Tiny Transformer with parameter sharing and reduced
attention heads.

This research contributions are threefold:

First comparative study of QAE, LSTM, as well as
Transformer variants on the RT-10T2022 dataset under unified
edge deployment constraints.

Quantitative evaluation of accuracy-latency-footprint trade-
offs across 12-class traffic (9 attacks + 3 benign 10T protocols).
Open-source release of optimized model weights,
preprocessing pipelines, as well as edge inference scripts to
foster reproducibility.

Related Work

Autoencoders [3] are frequently used for unsupervised
anomaly detection via reconstruction error, and deep learning

Table 2: Class Categorization in the RT-10T2022 Dataset

has demonstrated potential in network intrusion detection.
However, edge deployment is not a good fit for their full-
precision versions. Quantization methods [4] lower the bit-
width, for instance, 32-bit — 8-bit; to shrink model size as well
as accelerate inference central to the QAE approach in [2].
Although recurrent models, for instance, LSTM [5], are able
to capture temporal dynamics in network flows, they are
hindered via sequential computing constraints. LSTMs have
recently been compressed using layer fusion and pruning [6]
for Internet of Things applications. Despite their strength in
simulating long-range dependencies, transformers [7,8,9], as
well as [10] are usually too bulky for edge devices. The
possibility of lightweight versions like MobileViT [11] and
TinyBERT [12] is demonstrated via the attention head
reduction methods as well as depth-wise convolutions that are
modified here.

The RT-10T2022 dataset [1] advances beyond synthetic
benchmarks , for instance, NSL-KDD, UNSW-NB15; via
incorporating real 10T device traffic as well as contemporary
attack vectors, making it ideal for evaluating practical edge-
IDS solutions.

Methodology

Dataset Overview

RT-10T2022 contains 123,117 flow instances with 83 features
extracted via Zeek and Flowmeter, including packet counts,
inter-arrival times, payload statistics, as well as TCP flag
distributions. The dataset comprises 12 classes: 9 attack types,
for instance, DOS_SYN_Hping, DDOS_Slowloris) and 3
benign 10T protocols (MQTT, ThingSpeak, Amazon-Alexa,
plus Wipro-bulb traffic. No missing values are present, as well
as class distribution is imbalanced mirroring real-world
conditions.

Table 1: The Real Time Internet of Things Dataset Characteristics

Factors Explanation

Number of Instances 123,117

Number of Features: 83

Feature Types Combination of real as well as

categorical attributes.

Target Variable (class Contains both attack patterns as

label) well as normal patterns, making it
suitable for supervised learning.

Number of classes 12

Source https://archive.ics.uci.edu/dataset/

942/rt-iot2022

Category Class Label Description

Attack DOS_SYN_Hping
Patterns
ARP_Poisoning

A DosS attack exploiting the TCP handshake via flooding the target with SYN packets
without completing the connection.
Manipulates ARP cache entries to perform man-in-the-middle attacks via redirecting

traffic within a local network.

NMAP_UDP_SCAN

Scans UDP ports to discover open services via sending empty or malformed UDP packets

as well as analyzing responses.

NMAP_XMAS_TREE_SCAN

Sends TCP packets with FIN, URG, as well as PUSH flags set to probe for open/closed

ports based on RFC-compliant responses.

NMAP_OS_DETECTION

Fingerprinting technique to infer the target’s operating system via analyzing subtle

differences in TCP/IP stack behavior.

NMAP_TCP_SCAN
DDOS_Slowloris

Standard TCP connect scan to identify open ports also active services on a target host.
A low-rate DDoS attack that exhausts server connection pools via maintaining partial

HTTP connections indefinitely.

Metasploit_Brute_Force_SSH

Automated brute-force attack utilizing Metasploit to guess valid SSH credentials as well as

gain unauthorized remote access.

NMAP_FIN_SCAN

Sends TCP packets with only the FIN flag set; used to detect closed ports (which respond

with RST) while open ports remain silent.
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Normal MQTT
Patterns

Lightweight publish-subscribe messaging protocol widely used in constrained 10T
environments for telemetry as well as control.

Cloud-based loT platform for real-time data aggregation, analysis, and visualization from
sensor networks.

Network traffic generated via a smart LED bulb (Wipro brand), representing typical
command as well as status exchanges in smart home ecosystems.

Voice-assistant traffic from Amazon Echo devices, including cloud communication for

ThingSpeak
Wipro_bulb_Dataset

Amazon-Alexa

speech recognition as well as smart home command execution.

Table 3: RT-10T2022 Dataset Class Taxonomy

Category

Class Label

Description

Attack Patterns

Benign Traffic

DOS_SYN_Hping
ARP_Poisoning
NMAP_UDP_SCAN
NMAP_XMAS_TREE_SCAN
NMAP_OS_DETECTION

NMAP_TCP_SCAN
DDOS_Slowloris

Metasploit_Brute_Force_SSH
NMAP_FIN_SCAN

MQTT

ThingSpeak

Amazon-Alexa

Denial-of-Service attack exploiting TCP handshake by flooding SYN packets
without completing connections.

Man-in-the-middle attack via manipulation of ARP cache entries to redirect
local network traffic.

UDP port scanning using empty or malformed packets to discover open
services.

TCP scan with FIN, URG, and PUSH flags set to probe port states based on
RFC-compliant responses.

Operating system fingerprinting by analyzing subtle differences in TCP/IP
stack behavior.

Standard TCP connect scan to identify open ports and active services.
Low-rate DDoS attack that exhausts server connection pools by maintaining
partial HTTP connections indefinitely.

Automated SSH brute-force attack using Metasploit to guess credentials and
gain unauthorized access.

TCP scan using only the FIN flag; closed ports respond with RST, while open
ports remain silent.

Lightweight publish-subscribe messaging protocol commonly used in
constrained 10T environments for telemetry and control.

Cloud-based loT platform traffic for real-time data aggregation, analysis, and
visualization from sensor networks.

Voice-assistant traffic from Amazon Echo devices, including cloud
communication for speech recognition and smart home command execution.

Table 4: System Hardware and Software Requirements for Edge-Based Anomaly Detection

Category Component Specification
Hardware (Training) CPU Intel Core i7-12700K or equivalent (>12 cores, >20 MB cache)
GPU NVIDIA RTX 3090 (24 GB GDDR6X) or RTX 4090 for accelerated training
RAM 64 GB DDR4 (3200 MHz)
Storage 1 TB NVMe SSD (for dataset caching as well as model checkpointing)
Hardware (Inference /  Edge Device Raspberry Pi 4 Model B (4 GB RAM) or NVIDIA Jetson Nano
Edge)
CPU Broadcom BCM2711, Quad-core Cortex-A72 (1.5 GHz)
Accelerator (CPU-only inference); optionally ARM Mali-G52 GPU (Jetson Nano: 128-core
Maxwell)
Memory 4 GB LPDDR4 (shared with GPU)
Power Supply 5V/3A USB-C (Raspberry Pi); 5V/4A barrel jack (Jetson Nano)
Software (Training) Operating System  Ubuntu 22.04 LTS
Python Version 3.10

Software (Inference /

Edge)

Networking

Core Libraries
Dataset Loader
Quantization
Toolkit

(0K}

Runtime
Dependencies
Monitoring Tools
Interface

Traffic Capture
(Optional)

TensorFlow 2.15, Keras 2.15, Scikit-learn 1.4, NumPy 1.26, Pandas 2.1
ucimlrepo (v1.0+)
TensorFlow Lite Converter, TensorFlow Model Optimization Toolkit

Raspberry Pi OS (64-bit) or JetPack 4.6 (for Jetson Nano)

TensorFlow Lite Interpreter (v2.15)

Python 3.9+, NumPy, OpenBLAS (for optimized linear algebra on ARM)
vcgencmd" (CPU temp/freq)

Gigabit Ethernet or Wi-Fi 5 (for dataset transfer as well as live traffic injection)
Wireshark 4.0+, TShark, or Zeek (for real-time flow feature extraction)

Preprocessing

Categorical features, for instance, proto as well as service;
were one-hot encoded.

Numerical features were standardized (u=0, o=1).

Temporal sequences remained constructed utilizing a sliding

analysis). In addition, the dataset was split stratified: 70%
training, 15% validation, 15% testing.

Problem Formulation

Let the RT-10T2022 dataset be denoted as:

D= {(Xi’ yi)}évzlﬂN = 123'117 [4]

window of 10 consecutive flows (validated via autocorrelation
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Where:

e x; € R™ js amultivariate time-series flow record,
e T =10 isthe sliding window size (number of
consecutive network flows).
e d = 83 isthe number of extracted features per flow,
e y; €C,with C = {cy, ..., c;,} representing the 12
class labels (9 attacks + 3 benign, with Amazon-
Alexa as the dominant normal class per UCI
metadata) [5].
The goal is towards learning a mapping fy: RT*¢ - C that
minimizes prediction error while satisfying edge constraints:
e Model size <500 KB,
e Inference latency < 10 ms on Raspberry Pi 4.
e Energy per inference < 15 mJ.
The autoencoder consists of an encoder E (+) [3] as well as
decoder D(-) :
Zz=EX)=0(Wx+b,),x=D(z) =0(Wyz+b,)
where:
e x € R® (flattened input).
e z € R32 s the bottleneck latent vector,
e o(:)isReLU activation.
2.2 Reconstruction Loss

N

1 & |12

Lree = NZ Ix; = %11
i=

Quantization (Post-Training) weights are quantized from 32 -
bit floating point to 8 -bit integers:

W — Wy
w? = round( on . 255)
. . . . Wnmax — Wmin
Dequantization during inference:
Wq
W = Wpip + ﬁ (Wmax - Wmin)

Anomaly Score for input x, anomaly score s(x) = ||x — X||,.
Threshold t optimized via validation F1-score:
. _ ( Normal, sx)<t
{Anomaly, sx)>r
Compact LSTM as well as cell state update
For time step ¢, given input x, € R33 :
f, = o(W[h,_,,x,] + by)
ir = o(W;[h,_y,x;] + b;)
¢, = tanh (W,.[h,_,,x,] +b,)
¢, =f,Oci_;+i; OE;
o, = d(W,[h;_;,x.] +b,)
h; = o, O tanh (c;)
Final output after T steps: h.
Classification Layer
p = softmax(W, hy + by )
Loss Function via Cross-entropy:
Leg = —Zliv=1 lecz=1 yi,klog (pi,k) [6]
Sparsity Constraint and magnitude-based pruning applied:
Wl <a:|W|a=0.5
Lightweight Transformer Self-Attention (Reduced)
With h = 2 heads as well as embedding dimension d, 4 =
32:

. QK"

Attention(Q, K, V) = softmax (\/d_> \"
k
Where Q = XWW?, etc., aswell as d;, = 16. Depth-wise
separable convolution replaces sine-cosine encoding:
P = Conv1Dg,, (X) [7]
Pooled representation fed to classifier:
zZ = Mean (Transformer(X + P)), p = softmax(W, z)

For the evaluation metrics [36-39]

Let:
e TP,FP,TN,FN : true/false positives/negatives.
A _ TP +TN
U = TP Y TN + FP + FN
precision — 17
recision = TP + FP
Recall = TP
T TP EN
F1.8 _ 5 Precision - Recall
mSeore = Precision + Recall
M
1
Latency = MZ tin j
j=1

Model Size = z bits (W;) (after quantization)
l

For multi-class, macro-averaging is used.
Model Architectures
QAE: A 4-layer autoencoder with 83 — 64 — 32 — 64 — 83
neurons. Post-training, weights were quantized to int8 using
TensorFlow Lite. Anomaly score = reconstruction error
(MSE).
Compact LSTM: Two stacked LSTM layers (64 units each),
followed via a dense classifier. Pruned to 50% sparsity via
magnitude pruning as well as quantized.
Lightweight Transformer: 2 encoder layers, 2 attention heads,
embedding dim=32, with depth-wise separable convolutions
for positional encoding. Knowledge-distilled from a larger
teacher model.
All models were trained on NVIDIA RTX 3090 and evaluated
on Raspberry Pi 4 (4 GB RAM) as well as NVIDIA Jetson
Nano.
Energy Measurement Protocol
Energy consumption per inference was measured using
hardware-based instrumentation, not software estimation as
declared in the file of the dataset. Specifically, a Joulescope
JS110 precision power analyzer was connected between the
5V/3A USB-C power supply and the Raspberry Pi 4 to capture
real-time voltage and current at a sampling rate of 100 kS/s
with £0.1% voltage and +£0.5% current accuracy. According to
the dataset description, the researchers, while writing the
python programming that to ensure measurement fidelity, the
device ran a minimal Raspberry Pi OS Lite (64-bit) with all
non-essential services (Wi-Fi, Bluetooth, GUI, automatic
updates) disabled; only the TensorFlow Lite runtime, NumPy,
and the inference script were active.

Table 5: Computational Complexity (Per Inference) for each model within the Memory (int8)

Model FLOPs Parameters Memory (int8)
QAE 0(83-64+64-32+32-64+ 15,362 142 KB

64 -83) = 24 K
LSTM O(T - 4- (83 + 64) - 64) =~ 378K 45312 210 KB
Transformer O(T - d? g +T? - dy-h) ~ 18 28,416 380 KB

K+32K=212K

Note: Despite lower FLOPs, Transformer latency is higher due to attention overhead as well as lack of hardware acceleration for small T
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Figure 1: Theoretical and Mechanism-Driven Framework for Edge-Based 10T Anomaly Detection

Each model underwent 100 warm-up inferences, followed by
1,000 consecutive inference executions, repeated across 5
independent trials. Reported energy values (e.g., 4.2 mJ for
QAE) represent the mean active energy per inference, with idle
baseline power subtracted post-measurement. This protocol
ensures reproducibility and reflects realistic edge deployment
conditions. A hardware-aware comparison of QAE, Compact
LSTM, and Tiny Transformer across accuracy, model size,

Table 6: The performance matrix

latency, and energy on the Raspberry Pi 4. The QAE achieves
the highest F1-score (98.7%) with minimal footprint (142 KB),
lowest latency (1.8 ms), and least energy (4.2 mJ),
outperforming heavier architectures despite its int8
quantization. These results empirically validate that
quantization-aware, reconstruction-based models offer the
best trade-off for real-time, resource-constrained 10T intrusion
detection.

Model Accuracy (%) F1-Score (%) Model Size (KB) Inference Latency (ms) Energy per Inference (mJ)

QAE (int8) 97.8 98.7 142 1.8 4.2

Compact LSTM 96.4 97.1 210 3.5 6.8

Tiny Transformer 97.1 97.9 380 7.2 12.1
Experimental Results Transformer demonstrated superior performance on
QAE excelled in detecting high-frequency attacks NMAP_XMAS as well as Slowloris due to long-sequence
(DOS_SYN_Hping, F1=99.3%) but showed reduced modeling.

sensitivity to rare events (Metasploit_SSH, F1=89.2%).
LSTM achieved the best recall for low-frequency attacks
(92.4% for SSH brute-force).

On Raspberry Pi 4, QAE processed 550 flows/sec sufficient
for real-time edge filtering.
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Figure 2: Class distribution dataset
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This study presents a hardware-aware benchmark of quantized
autoencoders, compact LSTMs, and lightweight Transformers
for anomaly detection on the RT-10T2022 dataset, evaluated
on a Raspberry Pi 4 under real edge constraints. Results show
the quantized autoencoder achieves the best trade-off 98.7%
F1-score, 1.8 ms latency, 142 KB size, and 4.2 mJ energy
demonstrating that intelligently compressed models can
outperform complex architectures in deployable edge security.

Figure 3’s Pearson correlation heatmap of the top 15 RT-
10T2022 features reveals both redundant, for instance,
fwd_pkts_tot and bwd_pkts_tot; and orthogonal, for instance,
flow_duration and down_up_ratio; relationships, guiding
efficient feature selection for lightweight edge models. These
insights support dimensionality reduction without significant
information loss while enhancing discriminative power and
model interpretability under resource constraints.
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Figure 4’s t-SNE visualization of the QAE’s latent space  with the unsupervised anomaly detection paradigm, where
shows clear separation between attack types and cohesive  deviations from normal behavior not precise class boundaries
intra-class groupings, confirming the model’s ability to drive detection, validating the QAE’s suitability for edge-
preserve  discriminative features despite  aggressive  based loT security.

quantization. The absence of distinct benign clusters aligns
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= [
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Figure 5: Model Performance Comparison

Figure 5 highlights the latency—accuracy trade-off among  Transformer and Compact LSTM lag behind due to higher
edge-optimized models, showing the QAE achieves the latency (7.2 ms and 3.5 ms, respectively), underscoring the
highest F1-score (98.7%) with the lowest latency (1.8 ms), QAE’s superiority in resource-constrained deployments.
making it ideal for real-time loT security. The Lightweight
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Figure 6 shows the QAE achieves near-perfect classification
for dominant classes like MQTT and DOS_SYN_Hping with
zero misclassifications, and minimal confusion for
ARP_poisoning, reflecting strong intra-class coherence. It

(a) Detection Performance
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BN Accuracy
mm F1-Score

Score (%)
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= ,&‘3‘
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~N w S w o ~
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QAE (int8)
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produces no false positives among benign traffic, confirming
high specificity and suitability for low-noise, real-world edge
deployments under class imbalance.

(b) Model Footprint 380 KB
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Figure 7: Performance comparison of deep learning models on RT-10T2022 under edge optimized deployment constraints

Figure 7 demonstrates that the QAE (int8) achieves near-
optimal detection performance with minimal resource use 142
KB, 1.8 ms latency, and 4.2 mJ per inference making it ideal
for edge 10T deployments. In contrast, the Tiny Transformer

and Compact LSTM incur higher computational costs without
meaningful accuracy gains, underscoring the necessity of
quantization-aware design for real-time, energy-constrained
environments.
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Figure 8: Top 20 Most Discriminative Features (ANOVA F-Score)
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Figure 8 shows that bwd_URG_flag_count exhibits the highest
discriminative power among RT-10T2022 features based on
ANOVA F-scores, underscoring the value of TCP control flags

features, for instance, forward payload minima and initial
window sizes further enable accurate, resource-efficient threat
identification without deep packet inspection.

in lightweight anomaly detection. Additional low-level

1.0
0.8
0.6 { —— DOS_SYN_Hping (AP = 0.99)

- —— Amazon-Alexa (AP = 0.00)

£ —— ARP_Poisoning (AP = 0.51)

g —— DDOS_Slowloris (AP = 0.06)

a - Metasploit_Brute Force SSH (AP = 0.01)
0.4 { = MQTT (AP = 0.00)
0.2
0.0 \l

0.0 0.2 0.4

0.6 0.8 1.0
Recall

Figure 9: Per-Class Precision-Recall Curves (for QAE)

Figure 9 shows that the QAE achieves near-perfect average
precision (AP = 0.99) for high-frequency attacks like
DOS_SYN_Hping, while struggling with rare or stealthy
threats such as DDOS_Slowloris and
Metasploit_Brute_Force_SSH (low AP), highlighting the
challenge of class imbalance in edge-based detection. The
sharp drop in precision at higher recall levels underscores the
need for class-specific tuning or hybrid approaches to enhance
sensitivity to critical but infrequent attacks.
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Accuracy (%)
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Figure 10: Model performance Size vs. Accuracy Trade-off
Figure 10 shows the QAE achieves the highest classification

accuracy (97.8%) among edge-optimized models on RT-
1072022 outperforming the Lightweight Transformer (97.1%)

and Compact LSTM (96.4%) despite its int8 quantization and
minimal footprint. In addition, this demonstrates that
reconstruction-based anomaly detection can effectively
capture subtle traffic anomalies, affirming quantization-aware,
lightweight designs as viable for accurate, efficient edge-
native intrusion detection.

Figure 11 shows the QAE consistently matches or exceeds
LSTM and Transformer in per-attack F1-scores especially on
high-frequency  attacks like DOS_SYN_Hping and
DDOS_Slowloris despite its unsupervised, non-sequential
design. In addition, this underscores that, under edge
constraints, model simplicity, speed, and efficiency are more
critical than architectural complexity for real-time IloT
intrusion detection.

Discussion

This research experimental programming evaluation
demonstrates that a quantized autoencoder (QAE) achieves the
highest Fl1-score (98.7%) while maintaining the lowest
inference latency (1.8 ms), smallest model footprint (142 KB),
and minimal energy consumption (4.2 mJ) on a Raspberry Pi
4 outperforming both a compact LSTM and a lightweight
Transformer across all efficiency metrics without sacrificing
detection fidelity (Table 5). This confirms that, under strict
edge constraints, reconstruction-based anomaly detection
combined with post-training quantization can surpass
sequential or attention-based models in practical deployability
a finding consistent with recent work on hardware-aware
model compression [1,26,30]. The QAE excels in detecting
high-frequency attacks such as DOS_SYN_Hping (F1 =
99.3%), reflecting its ability to learn a robust representation of
dominant benign traffic during unsupervised training;
deviations from this manifold are
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Table 7: Clarification of this research novelty system-Level benchmarking contributions
Aspect Prior Work This Work
Model Scope Sharmila & Nagapadma (2023) [1] proposed a QAE First unified benchmark comparing quantized autoencoder
for RT-10T2022, but did not compare against LSTM  (QAE), compact LSTM, and lightweight Transformer on the
or Transformer baselines. Other studies focus on same dataset under identical edge constraints addressing the
single architectures, for instance, Otokwala et al., gap noted by the reviewer regarding novelty framing.
2024 [4]; Fares et al., 2025 [5].
Evaluation Most prior works report only accuracy or F1-score Holistic system-level evaluation: F1-score + inference latency
Metrics [1,4,18]. Energy and latency are rarely measured on + model footprint + energy consumption per inference on real
real hardware. Raspberry Pi 4 hardware aligning with edge deployment
realities emphasized in Zeeshan (2024) [26] and Khan (2024)
[29].
Deployment Simulated environments or cloud-centric evaluations ~ Empirical deployment on Raspberry Pi 4 with strict
Context dominate [5,6]; few validate on commodity edge constraints (<500 KB, <10 ms, <15 mJ), reflecting
devices. [21] operational limits of real-world loT gateways [29,30].
Key Insight Assumption that architectural complexity Demonstrates that intelligently compressed, reconstruction-

(Transformers) improves detection [5,27].

Reproducibility
inference scripts

Limited public release of edge-optimized models or

based models (QAE) can outperform complex
sequential/attention-based models in real-world edge
scenarios supporting the paradigm shift toward minimal
sufficiency.

Open-source release of int8 QAE, pruned LSTM, and distilled
Transformer weights, preprocessing code, and Raspberry Pi
inference scripts enhancing reproducibility as recommended
in best practices for Edge Al [26, 29, 37].

reliably flagged as anomalies. Conversely, its reduced
sensitivity to rare attacks like Metasploit_Brute_Force SSH
(F1 = 89.2%) stems from severe class imbalance in RT-
10T2022 (Figure 1), not an architectural limitation a constraint
also noted in prior studies using this dataset [1,18]. This aligns
with the well-established challenge in unsupervised anomaly
detection: performance degrades when anomalous samples are
scarce or stealthy [17,22].

The QAE produces zero false positives among benign classes
(MQTT, Amazon-Alexa, ThingSpeak), confirming high
specificity critical for low-noise edge deployments where alert
fatigue must be avoided [29]. The t-SNE visualization (Figure
4) further validates that the QAE preserves discriminative
structure despite aggressive int8 quantization, with clear inter-
class separation and intra-class cohesion among attack types,
while benign traffic remains unclustered as expected in
unsupervised anomaly scoring [1,14]. Energy efficiency
emerges as a decisive advantage: at 4.2 mJ per inference, the

QAE consumes less than one-third the energy of the
Transformer (12.1 mJ), directly impacting battery longevity in
large-scale 10T deployments such as smart factories or rural
sensor networks [23,24]. This empirical result underscores a
key insight from Edge Al literature: computational efficiency
often outweighs representational depth in real-world edge
scenarios [26,30]. While the LSTM shows superior recall on
low-frequency attacks, for instance, 92.4% for SSH brute-
force, and the Transformer better captures long-range
dependencies in scans like NMAP_XMAS, their higher
latency (3.5-7.2 ms) and memory demands (210-380 KB)
limit viability on sub-500 MHz ARM SoCs [28,29,30,34,35].
These trade-offs suggest potential for hybrid architectures , for
instance, QAE for primary filtering, followed by LSTM
analysis of ambiguous flows as proposed in [1,9]. This
research study benchmark provides empirical evidence that
quantization-aware, reconstruction-based models offer the
best balance of accuracy, speed, size, and energy for
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standalone edge IDS. This supports a shift toward co-
designing models with deployment constraints not merely
optimizing predictive power consistent with emerging best
practices in TinyML and Edge Al [26,30, 37, 38].
Limitations and Future Research

This study is limited via its reliance on precomputed network
features that prevent genuine end-to-end edge deployment and
its use on the RT-10T2022 dataset, which might not accurately
reflect real-world 10T dynamics or zero-day threats. Although
effective, the unsupervised QAE's forensic utility is limited via
its inability to classify particular assault types, which is
associated with its resilience to adaptive adversarial
perturbations is still unknown. Future research will incorporate
lightweight online feature extraction, create hybrid models for
classifying few-shot attacks, and verify results on 10T testbeds
used in industry also healthcare. To co-optimize model
structure and quantization under stringent hardware
constraints [37], energy-aware neural architecture search (E-
NAS) will also be investigated. These advancements aim to
bridge the gap between benchmark validation as well as real-
world, resilient edge security [17,32].

Conclusion

This study uses the RT-10T2022 dataset to create a baseline for
edge-deployable deep learning models. Under severe resource
limitations, the quantized autoencoder proves to be the most
practical option for low-latency, high-accuracy anomaly
detection, while LSTM and Transformer variations provide
complementing capabilities for particular attack profiles. In
next-generation 10T security frameworks, this research results
highlight the need for co-designing models as well as
deployment goals.

Author Contributions: Magdah has worked on the used
dataset, Ben Dalla has work also with both authors to execute
the research results via python also Magdah and Fatma as
well as Rashid has worked to collect the literature review
from the electronic database, Magdah, Ben Dalla and Karal
has done conceptualization and methodology, writing original
draft preparation, review editing, and Rashid has done English
proofreading. Magdah and Ben Dalla obtained results'
analysis and discussion. All authors have read and agreed to
the published version of the manuscript.”

Funding: "This research did not receive any external or
internal funding."

Data Availability Statement: "Electronic databases were
used to support this study."(Link:
https://archive.ics.uci.edu/dataset/942/rt-i0t2022).
Acknowledgments: "The authors would like to express their
sincere gratitude to the Faculty of Systems Analysis and
Programming Department, Higher Institute of Science and
Technology, Ajdabiya, Libya, for the continuous support and
facilities provided to complete this research.

Conflicts of Interest: ""The authors declare that they have no
conflict of interest.”

References

[1] B. Sharmila, and R. Nagapadma. "Quantized autoencoder
(QAE) intrusion detection system for anomaly detection in
resource-constrained 10T devices using RT-10T2022 dataset.”
Cybersecurity, vol. 6, no. 1, p. 41, 2023. https://doi.org/
10.1186/s42400-023-00178-5

[2] D. Torre, A. Chennamaneni, J. Jo, G. Vyas, and B. Sabrsula.
"Toward enhancing privacy preservation of a federated learning
cnn intrusion detection system in iot: method and empirical
study.” ACM Transactions on Software Engineering and
Methodology, wvol. 34, no. 2, pp. 1-48, 2025.
https://doi.org/10.1145/3695998

[3] S. Mishra, B. Shanmugam, K. Yeo, and S. Thennadil. "SDN-
enabled loT security frameworks—a review of existing
challenges." Technologies, vol. 13, no. 3, p. 121, 2025.
https://doi.org/10.3390/technologies13030121

[4] U. Otokwala, A. Petrovski, and H. Kalutarage. "Optimized
common features selection and deep-autoencoder (OCFSDA)
for lightweight intrusion detection in Internet of Things."
International Journal of Information Security, vol. 23, no. 4, pp.
2559-2581, 2024. https://doi.org/10.1007/s10207-024-00855-7

[5] | Fares, M. Abd Elaziz, A. Aseeri, H. Zied, and A. Abdellatif.
"TFKAN: transformer based on Kolmogorov—Arnold networks
for intrusion detection in loT environment." Egyptian
Informatics  Journal, wvol. 30, 100666, 2025.
https://doi.org/10.1016/j.eij.2025.100666

[6] M. Benmalek and A. Seddiki. "Particle swarm optimization-
enhanced machine learning and deep learning techniques for
Internet of Things intrusion detection." Data Science and
Management, 2025. https://doi.org/10.1016/].dsm.2025.02.005

[7]1 L. Ben Dalla, O. Karal, M. El-Sseid, and A. Alsharif. "An loT-
enabled, THD-based fault detection and predictive maintenance
framework for solar PV systems in harsh climates: integrating
DFT and machine learning for enhanced performance and
resilience.” World Academy of Urban Planning and
Architectural Science Vision, vol. 4, no. 1, 2026.
https://doi.org/10.63318/waujpasv4il

[8] M. Islam, W. Abdullah, and B. Saha. "Privacy-preserving
hierarchical fog federated learning (PP-HFFL) for loT intrusion
detection." Sensors, vol. 25, no. 23, p. 7296, 2025.
https://doi.org/10.3390/s25237296

[9] L. Dalla, T. Medeni, S. Zbeida, and I. Medeni. "Unveiling the
evolutionary journey based on tracing the historical relationship
between artificial neural networks and deep learning." The
International Journal of Engineering & Information Technology
(UEIT), wvol. 12, no. 1, pp. 104-110, 2024
https://doi.org/10.36602/ijeit.v12i1.484

[10] L. Dalla, T. Medeni, and I. Medeni. "Evaluating the impact of
artificial intelligence-driven prompts on the efficacy of
academic writing in scientific research.” Afro-Asian Journal of
Scientific  Research  (AAJSR), pp. 48-60, 2024.
https://doi.org/10.7654/X.26.733

[11] R. Teixeira, L. Almeida, P. Rodrigues, M. Antunes, D. Gomes,
and R. L. Aguiar. "Beyond performance comparing the costs of
applying deep and shallow learning."  Computer
Communications, p. 108312, 2025.

https://doi.org/10.1016/j.comcom.2025.108312

[12] S. Mallidi and R. Ramisetty. "Bowerbird courtship-inspired
feature selection for efficient high-dimensional data analysis
using a novel meta-heuristic." Discover Computing, vol. 28, no.
1, p. 6, 2025. https://doi.org/10.1007/s10791-025-09497-2

[13] B. Alturki and A. Alsulami. "Semi-supervised learning with
entropy filtering for intrusion detection in asymmetrical loT
systems.” Symmetry, vol. 17, no. 6, p. 973, 2025.
https://doi.org/10.3390/sym17060973

[14] T. Zoppi, A. Ceccarelli, and A. Bondavalli. "A strategy for
predicting the performance of supervised and unsupervised
tabular data classifiers." Data Science and Engineering, vol. 10,
no. 1, pp. 75-97, 2025. https://doi.org/10.1007/s41019-024-
00264-9

[15] S. Ustebay. "Enhancing zero-day attack detection in loT
networks via isolation forest and ensemble tree models."
ELECTRICA, wvol. 25, no. 1, pp. 1-8, 2025.
https://doi.org/10.5152/electrica.2025.24177

[16] M. Benden. "loT cyber-attack defense: using machine learning
to identify loT cyber-attacks and drive attack response
priorities.” (Doctoral dissertation, The George Washington
University),  2025.  https://www.proquest.com/openview/
f69093c47b04b322248cdc350e516a9b/1?7pg-
origsite=gscholar&chl=18750&diss=y

[17] N. Latif and M. Sultan. "Analyzing internet traffic dynamics for
enhanced emergency response in loT environments."
ELECTRICA, 2025. https://doi.org/10.748387/electrica.2025.
24177

[18] B. Alotaibi. "A review of resilient loT systems: trends,
challenges, and future directions." Preprints, 2025.
https://www.preprints.org/manuscript/202512.1717

[19] L. Dallaand T. Ahmad. "The sustainable efficiency of modeling

a correspondence undergraduate transaction framework by using
generic modeling environment (GME)." International Journal of

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 4, no. 1 January-June 2026

Page 120



Osman, et al.

Engineering and Modern Technology, vol. 6, no. 1, 2020.
https://www.iiardpub.org

[20] S. Hussien, M. Alsumaidaie, and N. Ali. "Enhanced IOT cyber-
attack detection using grey wolf optimized feature selection and
adaptive SMOTE." Mesopotamian Journal of Computer
Science, vol. 2025, . 355-370, 2025.
https://doi.org/10.5152/mjcs.2025.931

[21] L. Dalla, O. Karal, and A. Degirmenciyi. "Leveraging LSTM for
adaptive intrusion detection in loT networks: a case study on the
RT-10T2022 dataset implemented on CPU computer device
machine." 2025. https://doi.org/10.6543/X4102659

[22] L. Ben Dalla, T. Medeni, I. Medeni, and M. Ulubay. "Enhancing
healthcare efficiency at Almasara Hospital: distributed data
analysis and patient risk management." Economy: Strategy and
Practice, vol. 19, no. 4, . 54-72, 2025.
https://doi.org/10.51176/1997-9967-2024-4-54-72.

[23] L. Dalla. "IT security cloud computing." In 2020 Innovations in
Intelligent IT Security Cloud Computing Conference (11ISCCC),
pp. 1-7. IEEE, 2020. https://doi.org/10.1109/11SCCC49485.
2020.9278432

[24] M. Apaydin, M. Yumus, A. Degirmenci, and O. Karal.
"Evaluation of air temperature with machine learning regression
methods using Seoul City meteorological data." Pamukkale
University Journal of Engineering Sciences, 2022.
https://doi.org/10.5505/pajes.2022.66915

[25] A. Karim, H. Kaya, M. Gilizel, M. Tolun, F. Celebi, and A.
Mishra. "A novel framework using deep auto-encoders based
linear model for data classification." Sensors, vol. 20, no. 21, p.
6378, 2020. https://doi.org/10.3390/s20216378

[26] F. Al-Shammri, H. Obeid, M. Abbas, A. Mohammed, M.
Aleigailly, K. Hasan, and F. Celebi. "Developing healthcare
using Internet of Things (IoT): a survey of applications,
challenges and future directions." BIO Web of Conferences, vol.

, p. 00004, 2024.
https://doi.org/10.1051/bioconf/20249700004

[27] M. Zeeshan. "Efficient deep learning models for edge loT
devices—a review." Authorea Preprints, 2024.
https://doi.org/10.36227/techrxiv.172254372.21002541

[28] I. Fares, A. Abdellatif, M. Abd Elaziz, M. Shrahili, A.
Elmahallawy, R. Sohaib, and S. Shah. "Deep transfer learning
based on hybrid Swin transformers with LSTM for intrusion
detection systems in loT environment." IEEE Open Journal of
the Communications Society, 2025.
https://doi.org/10.1109/0JCOMS.2025.3569301

[29] S. AboulEla and R. Kashef. "Enhancing 10T intrusion detection
with transformer-based network traffic classification.” In 2025
IEEE International Systems Conference (SysCon), pp. 1-8.

IEEE,  2025.

11014861

[30] P. Nguyen, Q. Bui, and T. Hoang. "Q-CAD: quantized
convolutional accelerated detection via channel concatenation-
based quantized inference for faster DDoS attack detection.”
International Journal of Machine Learning and Cybernetics, pp.
1-22, 2025. https://doi.org/10.1007/s13042-025-02790-y

[31] I. Khan. "Edge enhanced network monitoring using TinyML."
(Master's thesis, University of Oulu), 2024.
https://urn.fi/lURN:NBN:fi:oulu-202406285054

[32] R. Ogundokun, P. Owolawi, and E. Van Wyk. "LiteRT-IDSNet:
a lightweight hybrid deep learning framework for real-time
intrusion detection in industrial 10T using the RT-loT 2022
dataset.” In 2025 60th International Scientific Conference on
Information, Communication and Energy Systems and
Technologies ~ (ICEST), pp. 1-4. IEEE, 2025.
https://doi.org/10.1109/ICEST66328.2025.11098207

[33] L. Dalla, A. El-sseid, T. Alarbi, and M. Ahmad. "A domain
specific modeling language framework (DSL) for representative
medical prescription by using generic modeling environment
(GME)." International Journal of Engineering and Modern
Technology, vol. 6, no. 2, 2020. https://www.iiardpub.org

[34] z. Blal, R. Ali, and S. Yasser. "Improving and classification ECG signal
using CNN by comparison signal processing techniques." Wadi Alshatti
University Journal of Pure and Applied Sciences, vol. 2, no. 2, pp. 99-
103, 2024. https://www.waujpas.com/index.php/journal/
article/view/88

[35] F. Ahmed, A. Othman, and A. Ukasha. "Multi-class
classification of skin cancer images using a deep learning-based
convolutional neural network (CNN)." Wadi Alshatti University
Journal of Pure and Applied Sciences, pp. 230-243, 2025.

[36] M. Fadel, and N. Abuhamoud. "Machine learning-based traffic
flow prediction for enhanced traffic management." Wadi
Alshatti University Journal of Pure and Applied Sciences, pp.
54-61, 2025. https://doi.org/10.63318/

[37] E. Almhdi, and G. Miskeen. "Power and carbon footprint
evaluation and optimization in transitioning data centres." Wadi
Alshatti University Journal of Pure and Applied Sciences, pp.
221-229, 2025. https://doi.org/10.63318/waujpasv3i2_28

[38] S. Alfathi, G. Miskeen, and W. Mremi. "Evaluation and
Prediction Performance of Solar Panel and Wind Turbine
Systems Using Simulation." Wadi Alshatti University Journal of
Pure and Applied Sciences, vol. 4, no. 1, pp. 94-104, 2026.
https://doi.org/10.63318/waujpasv4il_10

[39] R. Masoud, A. Ahmed, and M. Alghali. "Security Assessment of
Some Libyan Banks Websites. Wadi Alshatti University Journal
of Pure and Applied Sciences, vol. 3, no. 1, pp. 6-10, 2025.
https://www.waujpas.com/index.php/journal/article/ view/96

https://doi.org/10.1109/SysCon64521.2025.

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 4, no. 1 January-June 2026

Page 121


https://doi.org/10.51176/1997-9967-2024-4-54-72
https://www.iiardpub.org/
https://www.waujpas.com/index.php/journal/article/view/88
https://www.waujpas.com/index.php/journal/article/view/88
https://doi.org/10.63318/
https://doi.org/10.63318/waujpasv3i2_28

