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نهج جديد للكشف عن الحالات الشاذة بدقة عالية وزمن استجابة منخفض على الحافة: تقييم أداء المشفرات التلقائية الكمية،  

 RT-IoT2022وشبكات الذاكرة طويلة المدى، والمحولات الخفيفة على بيانات حركة مرور السلاسل الزمنية  

     4طارق  راشد ،3عمر كرال، 3، للاهم بن دلة2، فاطمة  القذافي*1ماجدة عثمان 

 الملخص  الكلمات المفتاحية  

 الذكاء الاصطناعي الطرفي 

 أمن إنترنت الأشياء، كشف الشذوذ 

شفّر التلقائي الكمي 
ُ
 الم

LSTM  خفيف الوزن 

ر، 
ّ
قط

ُ
حوّل الم

ُ
 RT-IoT2022الم

 كشف الاختراقات في الوقت الحقيقي 

حسّنة للحافة للكشف عن الحالات الشاذة في الوقت الفعلي ضمن بيئات إنترنت الأشياء   
ُ
تقارن هذه الدراسة نماذج التعلم العميق الم

التي تتضمن أربعة بروتوكولات سليمة وتسعة أنواع من الهجمات    RT-IoT2022ذات الموارد المحدودة، وذلك باستخدام مجموعة بيانات  

  -خفيف الوزن    Transformerمُدمجة، ونموذج    LSTM(، وشبكة  QAEمُشفّر تلقائي كمي )  - الإلكترونية. تم نشر ثلاثة نماذج معمارية  

نموذج، واستهلاك الطاقة لكل استدلال. حقق  ، وزمن الاستجابة، وحجم الF1، وتم تقييمها بناءً على مقياس  Raspberry Pi 4على جهاز  

مللي    4.2مللي ثانية، واستهلاك طاقة    1.8كيلوبايت، وزمن استجابة    142%، وحجم ذاكرة  98.7بلغ    F1أداءً مثاليًا بمقياس    QAEنموذج  

ا بذلك على البدائل في ظل قيود الحافة الصارمة. في حين أظهر نموذج  
ً
للهجمات النادرة، واستطاع استدعاءً أفضل    LSTMجول، متفوق

قدّم أفضل توازن شامل من حيث الأمان   QAEرصد التبعيات بعيدة المدى بتكلفة حسابية أعلى، إلا أن نموذج    Transformerنموذج  

التع من   
ً
بدلا للأجهزة  راعي 

ُ
الم المشترك  التصميم  على  ليرتكز  النموذج  اختيار  مفهوم  صياغة  العمل  هذا  يُعيد  للتطبيق.  قيد  القابل 

ضغوطة بذكاء والقائمة على إعادة البناء تتفوق على النماذج الأثقل من حيث الكفاءة والفعالي
ُ
 على أن الأساليب الم

ً
ة. المعماري، مُبرهنا

 للتكرار للكشف عن الاختراقات مع الحفاظ على الخصوصية وزمن الاستجابة المنخفض في الرعاية الصحية  
ً
 قابلا

ً
وفر النتائج إطارا

ُ
ت

 من السعة القصوى في تصميم الذكاء الذك
ً
 إلى تحول نموذجي نحو الحد الأدنى من الكفاءة بدلا

ً
ية وإنترنت الأشياء الصناعية، داعيا

 .الاصطناعي على الحافة.

 

Introduction Modern Internet of Things (IoT) ecosystems spanning smart 

healthcare, industrial automation, and residential systems are 

increasingly vulnerable to sophisticated cyber threats due to 
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their distributed nature and limited built-in security [1]. 

Traditional cloud-based intrusion detection systems (IDS) 

introduce unacceptable latency and privacy risks, prompting a 

shift toward edge-native solutions. However, deploying deep 

learning based IDS on resource-constrained edge devices 

remains challenging due to strict limitations on memory (<512 

MB), computational throughput, and energy budget. While 

model compression techniques such as quantization, pruning, 

and architectural distillation offer promising pathways, 

empirical validation across diverse, real-world IoT traffic is 

still scarce [2,3]. To address this gap, we present a hardware-

aware benchmark of three edge-optimized architectures 

quantized autoencoder (QAE), compact LSTM, and 

lightweight Transformer evaluated on the RT-IoT2022 dataset, 

which captures multivariate time-series traffic from real IoT 

devices under nine contemporary attack vectors and four 

benign protocols [4,5]. Unlike prior work that emphasizes 

architectural novelty, this research study focuses on system-

level trade-offs between accuracy, inference latency, model 

footprint, and energy consumption on a Raspberry Pi 4 

platform. This approach reframes edge AI design around 

deployability rather than complexity, demonstrating that 

intelligently compressed models can achieve high detection 

fidelity without sacrificing real-time performance. This 

research provides a reproducible framework for low-latency, 

privacy-preserving anomaly detection tailored to the 

operational realities of edge computing environments. A 

quantized autoencoder (QAE) trained for reconstruction-based 

anomaly scoring, 

A pruned as well as  quantized LSTM for sequential pattern 

recognition, 

A Tiny Transformer with parameter sharing and reduced 

attention heads. 

This research contributions are threefold: 

First comparative study of QAE, LSTM, as well as  

Transformer variants on the RT-IoT2022 dataset under unified 

edge deployment constraints. 

Quantitative evaluation of accuracy-latency-footprint trade-

offs across 12-class traffic (9 attacks + 3 benign IoT protocols). 

Open-source release of optimized model weights, 

preprocessing pipelines, as well as  edge inference scripts to 

foster reproducibility. 

 Related Work 

Autoencoders [3] are frequently used for unsupervised 

anomaly detection via reconstruction error, and deep learning 

has demonstrated potential in network intrusion detection. 

However, edge deployment is not a good fit for their full-

precision versions. Quantization methods [4] lower the bit-

width, for instance, 32-bit → 8-bit; to shrink model size as well 

as  accelerate inference central to the QAE approach in [2]. 

Although recurrent models, for instance, LSTM [5], are able 

to capture temporal dynamics in network flows, they are 

hindered via sequential computing constraints. LSTMs have 

recently been compressed using layer fusion and pruning [6] 

for Internet of Things applications. Despite their strength in 

simulating long-range dependencies, transformers [7,8,9], as 

well as [10] are usually too bulky for edge devices. The 

possibility of lightweight versions like MobileViT [11] and 

TinyBERT [12] is demonstrated via the attention head 

reduction methods as well as  depth-wise convolutions that are 

modified here. 

The RT-IoT2022 dataset [1] advances beyond synthetic 

benchmarks , for instance,  NSL-KDD, UNSW-NB15; via 

incorporating real IoT device traffic as well as  contemporary 

attack vectors, making it ideal for evaluating practical edge-

IDS solutions. 

Methodology 
Dataset Overview 

RT-IoT2022 contains 123,117 flow instances with 83 features 

extracted via Zeek and Flowmeter, including packet counts, 

inter-arrival times, payload statistics, as well as  TCP flag 

distributions. The dataset comprises 12 classes: 9 attack types, 

for instance, DOS_SYN_Hping, DDOS_Slowloris) and 3 

benign IoT protocols (MQTT, ThingSpeak, Amazon-Alexa, 

plus Wipro-bulb traffic. No missing values are present, as well 

as  class distribution is imbalanced mirroring real-world 

conditions. 

Table 1: The Real Time Internet of Things Dataset  Characteristics 

Factors  Explanation  

Number of Instances  123,117 

Number of Features:  83 

Feature Types Combination of real as well as  

categorical attributes. 

Target Variable (class 

label) 

Contains both attack patterns as 

well as  normal patterns, making it 

suitable for supervised learning. 

Number of classes  12 

Source  https://archive.ics.uci.edu/dataset/

942/rt-iot2022  

Table 2: Class Categorization in the RT-IoT2022 Dataset 

Category Class Label Description 

Attack 

Patterns 

DOS_SYN_Hping A DoS attack exploiting the TCP handshake via flooding the target with SYN packets 

without completing the connection.  
ARP_Poisoning Manipulates ARP cache entries to perform man-in-the-middle attacks via redirecting 

traffic within a local network.  
NMAP_UDP_SCAN Scans UDP ports to discover open services via sending empty or malformed UDP packets 

as well as  analyzing responses.  
NMAP_XMAS_TREE_SCAN Sends TCP packets with FIN, URG, as well as  PUSH flags set to probe for open/closed 

ports based on RFC-compliant responses.  
NMAP_OS_DETECTION Fingerprinting technique to infer the target’s operating system via analyzing subtle 

differences in TCP/IP stack behavior.  
NMAP_TCP_SCAN Standard TCP connect scan to identify open ports also active services on a target host. 

 
DDOS_Slowloris A low-rate DDoS attack that exhausts server connection pools via maintaining partial 

HTTP connections indefinitely.  
Metasploit_Brute_Force_SSH Automated brute-force attack utilizing Metasploit to guess valid SSH credentials as well as  

gain unauthorized remote access.  
NMAP_FIN_SCAN Sends TCP packets with only the FIN flag set; used to detect closed ports (which respond 

with RST) while open ports remain silent. 

https://archive.ics.uci.edu/dataset/942/rt-iot2022
https://archive.ics.uci.edu/dataset/942/rt-iot2022
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Normal 

Patterns 

MQTT Lightweight publish-subscribe messaging protocol widely used in constrained IoT 

environments for telemetry as well as  control.  
ThingSpeak Cloud-based IoT platform for real-time data aggregation, analysis, and visualization from 

sensor networks.  
Wipro_bulb_Dataset Network traffic generated via a smart LED bulb (Wipro brand), representing typical 

command as well as status exchanges in smart home ecosystems.  
Amazon-Alexa Voice-assistant traffic from Amazon Echo devices, including cloud communication for 

speech recognition as well as  smart home command execution. 

 
Table 3: RT-IoT2022 Dataset Class Taxonomy 

Category Class Label Description 

Attack Patterns DOS_SYN_Hping Denial-of-Service attack exploiting TCP handshake by flooding SYN packets 

without completing connections.  
ARP_Poisoning Man-in-the-middle attack via manipulation of ARP cache entries to redirect 

local network traffic.  
NMAP_UDP_SCAN UDP port scanning using empty or malformed packets to discover open 

services.  
NMAP_XMAS_TREE_SCAN TCP scan with FIN, URG, and PUSH flags set to probe port states based on 

RFC-compliant responses.  
NMAP_OS_DETECTION Operating system fingerprinting by analyzing subtle differences in TCP/IP 

stack behavior.  
NMAP_TCP_SCAN Standard TCP connect scan to identify open ports and active services.  
DDOS_Slowloris Low-rate DDoS attack that exhausts server connection pools by maintaining 

partial HTTP connections indefinitely.  
Metasploit_Brute_Force_SSH Automated SSH brute-force attack using Metasploit to guess credentials and 

gain unauthorized access.  
NMAP_FIN_SCAN TCP scan using only the FIN flag; closed ports respond with RST, while open 

ports remain silent. 

Benign Traffic MQTT Lightweight publish-subscribe messaging protocol commonly used in 

constrained IoT environments for telemetry and control.  
ThingSpeak Cloud-based IoT platform traffic for real-time data aggregation, analysis, and 

visualization from sensor networks.  
Amazon-Alexa Voice-assistant traffic from Amazon Echo devices, including cloud 

communication for speech recognition and smart home command execution. 

            
 Table 4: System Hardware and Software Requirements for Edge-Based Anomaly Detection 

Category Component Specification 

Hardware (Training) CPU Intel Core i7-12700K or equivalent (≥12 cores, ≥20 MB cache)  
GPU NVIDIA RTX 3090 (24 GB GDDR6X) or RTX 4090 for accelerated training  
RAM 64 GB DDR4 (3200 MHz)  
Storage 1 TB NVMe SSD (for dataset caching as well as  model checkpointing) 

Hardware (Inference / 

Edge) 

Edge Device Raspberry Pi 4 Model B (4 GB RAM) or NVIDIA Jetson Nano 

 
CPU Broadcom BCM2711, Quad-core Cortex-A72 (1.5 GHz)  
Accelerator  (CPU-only inference); optionally ARM Mali-G52 GPU (Jetson Nano: 128-core 

Maxwell)  
Memory 4 GB LPDDR4 (shared with GPU)  
Power Supply 5V/3A USB-C (Raspberry Pi); 5V/4A barrel jack (Jetson Nano) 

Software (Training) Operating System Ubuntu 22.04 LTS  
Python Version 3.10  
Core Libraries TensorFlow 2.15, Keras 2.15, Scikit-learn 1.4, NumPy 1.26, Pandas 2.1  
Dataset Loader ucimlrepo (v1.0+)  
Quantization 

Toolkit 

TensorFlow Lite Converter, TensorFlow Model Optimization Toolkit 

Software (Inference / 

Edge) 

OS Raspberry Pi OS (64-bit) or JetPack 4.6 (for Jetson Nano) 

 
Runtime TensorFlow Lite Interpreter (v2.15)  
Dependencies Python 3.9+, NumPy, OpenBLAS (for optimized linear algebra on ARM)  
Monitoring Tools vcgencmd" (CPU temp/freq) 

Networking Interface Gigabit Ethernet or Wi-Fi 5 (for dataset transfer as well as  live traffic injection)  
Traffic Capture 

(Optional) 

Wireshark 4.0+, TShark, or Zeek (for real-time flow feature extraction) 

 

 Preprocessing 

Categorical features, for instance,  proto as well as  service; 

were one-hot encoded. 

Numerical features were standardized (μ=0, σ=1). 

Temporal sequences remained constructed utilizing a sliding 

window of 10 consecutive flows (validated via autocorrelation 

analysis). In addition, the dataset was split stratified: 70% 

training, 15% validation, 15% testing. 

Problem Formulation 

Let the RT-IoT2022 dataset be denoted as: 

𝒟 = {(𝐱𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , 𝑁 = 123,117                             [4] 
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Where: 

• 𝐱𝑖 ∈ ℝ𝑇×𝑑 is a multivariate time-series flow record, 

• 𝑇 = 10 is the sliding window size (number of 

consecutive network flows). 

• 𝑑 = 83 is the number of extracted features per flow, 

• 𝑦𝑖 ∈ 𝒞, with 𝒞 = {𝑐1, … , 𝑐12} representing the 12 

class labels (9 attacks + 3 benign, with Amazon-

Alexa as the dominant normal class per UCI 

metadata) [5]. 

The goal is towards learning  a mapping 𝑓𝜃: ℝ
𝑇×𝑑 → 𝒞 that 

minimizes prediction error while satisfying edge constraints: 

• Model size < 500 KB, 

• Inference latency < 10 ms on Raspberry Pi 4. 

• Energy per inference < 15 mJ. 

The autoencoder consists of an encoder 𝐸(⋅) [3] as well as  

decoder 𝐷(⋅) : 
𝐳 = 𝐸(𝐱) = 𝜎(𝐖𝑐𝐱 + 𝐛𝑒), 𝐱̂ = 𝐷(𝐳) = 𝜎(𝐖𝑑𝐳 + 𝐛𝑑) 

where: 

• 𝐱 ∈ ℝ83 (flattened input). 

• 𝐳 ∈ ℝ32 is the bottleneck latent vector, 

• 𝜎(⋅) is ReLU activation. 

2.2 Reconstruction Loss 

ℒrec =
1

𝑁
∑  

𝑁

𝑖=1

‖𝐱𝑖 − 𝐱̂𝑖‖2
2 

Quantization (Post-Training) weights are quantized from 32 -

bit floating point to 8 -bit integers: 

𝑤𝑞 = round (
𝑤 − 𝑤min

𝑤max − 𝑤min

⋅ 255) 

Dequantization during inference: 

𝑤 = 𝑤min +
𝑤𝑞

255
(𝑤max − 𝑤min) 

Anomaly Score for input 𝐱, anomaly score 𝑠(𝐱) = ‖𝐱 − 𝐱̂‖2. 

Threshold 𝜏 optimized via validation F1-score: 

𝑦̂ = {
 Normal, 𝑠(𝐱) ≤ 𝜏
 Anomaly, 𝑠(𝐱) > 𝜏

 

Compact LSTM as well as  cell state update 

For time step 𝑡, given input 𝐱𝑡 ∈ ℝ83 : 

𝐟𝑡 = 𝜎(𝐖𝑓[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑓)

𝐢𝑡 = 𝜎(𝐖𝑖[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑖)

𝐜̃𝑡 = tanh⁡(𝐖𝑐[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑒)

𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡−1 + 𝐢𝑡 ⊙ 𝐜̃𝑡
𝐨𝑡 = 𝜎(𝐖𝑜[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑜)

𝐡𝑡 = 𝐨𝑡 ⊙ tanh⁡(𝐜𝑡)

 

Final output after 𝑇 steps: 𝐡𝑇. 

Classification Layer 

𝐩 = softmax(𝐖cls 𝐡𝑇 + 𝐛cls ) 
Loss Function via Cross-entropy: 

ℒCE = −∑  𝑁
𝑖=1 ∑  12

𝑘=1 𝑦𝑖,𝑘log⁡(𝑝𝑖,𝑘)                        [6] 

Sparsity Constraint and magnitude-based pruning applied: 
|𝐖‖0 ≤ 𝛼 ⋅|𝐖 ∣, 𝛼 = 0.5 

Lightweight Transformer Self-Attention (Reduced) 

With ℎ = 2 heads as well as  embedding dimension 𝑑model =
32 : 

Attention(𝐐, 𝐊, 𝐕) = softmax (
𝐐𝐊⊤

√𝑑𝑘
)𝐕 

Where 𝐐 = 𝐗𝐖𝐖𝑄 , etc., as well as  𝑑𝑘 = 16. Depth-wise 

separable convolution replaces sine-cosine encoding: 

𝐏 = Conv1Ddw(𝐗)                                            [7] 

Pooled representation fed to classifier: 

𝐳 =  Mean (Transformer(𝐗 + 𝐏)), 𝐩 = softmax(𝐖els 𝐳) 
For the evaluation metrics [36-39] 

Let: 

• 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁 : true/false positives/negatives. 

 Accuracy ⁡=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 Precision ⁡=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 Recall ⁡=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 F1-Score ⁡= 2 ⋅
 Precision ⋅  Recall 

 Precision +  Recall 

 Latency ⁡=
1

𝑀
∑  

𝑀

𝑗=1

  𝑡inf ,𝑗

 Model Size ⁡= ∑  

𝑙

  bits (𝑊𝑙)⁡ (after quantization) 

 

For multi-class, macro-averaging is used.  

Model Architectures 

QAE: A 4-layer autoencoder with 83 → 64 → 32 → 64 → 83 

neurons. Post-training, weights were quantized to int8 using 

TensorFlow Lite. Anomaly score = reconstruction error 

(MSE). 

Compact LSTM: Two stacked LSTM layers (64 units each), 

followed via a dense classifier. Pruned to 50% sparsity via 

magnitude pruning as well as  quantized. 

Lightweight Transformer: 2 encoder layers, 2 attention heads, 

embedding dim=32, with depth-wise separable convolutions 

for positional encoding. Knowledge-distilled from a larger 

teacher model. 

All models were trained on NVIDIA RTX 3090 and evaluated 

on Raspberry Pi 4 (4 GB RAM) as well as  NVIDIA Jetson 

Nano. 

Energy Measurement Protocol 

Energy consumption per inference was measured using 

hardware-based instrumentation, not software estimation as 

declared in the file of the dataset. Specifically, a Joulescope 

JS110 precision power analyzer was connected between the 

5V/3A USB-C power supply and the Raspberry Pi 4 to capture 

real-time voltage and current at a sampling rate of 100 kS/s 

with ±0.1% voltage and ±0.5% current accuracy. According to 

the dataset description, the researchers, while writing the 

python programming that  to ensure measurement fidelity, the 

device ran a minimal Raspberry Pi OS Lite (64-bit) with all 

non-essential services (Wi-Fi, Bluetooth, GUI, automatic 

updates) disabled; only the TensorFlow Lite runtime, NumPy, 

and the inference script were active. 

 

Table 5: Computational Complexity (Per Inference) for each model within the Memory (int8) 

Model FLOPs Parameters Memory (int8) 

QAE 𝒪(83 ⋅ 64 + 64 ⋅ 32 + 32 ⋅ 64 +

64 ⋅ 83) ≈ 24 K
 

15,362 142 KB 

LSTM 𝒪(𝑇 ⋅ 4 ⋅ (83 + 64) ⋅ 64) ≈ 378 K 45,312 210 KB 

Transformer 𝒪(𝑇 ⋅ 𝑑unodel 
2 + 𝑇2 ⋅ 𝑑k ⋅ ℎ) ≈ 18

 K + 3.2 K = 21.2 K
 

28,416 380 KB 

Note: Despite lower FLOPs, Transformer latency is higher due to attention overhead as well as lack of hardware acceleration for small 𝑇. 
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                     Figure 1: Theoretical and Mechanism-Driven Framework for Edge-Based IoT Anomaly Detection 

 

Each model underwent 100 warm-up inferences, followed by 

1,000 consecutive inference executions, repeated across 5 

independent trials. Reported energy values (e.g., 4.2 mJ for 

QAE) represent the mean active energy per inference, with idle 

baseline power subtracted post-measurement. This protocol 

ensures reproducibility and reflects realistic edge deployment 

conditions. A hardware-aware comparison of QAE, Compact 

LSTM, and Tiny Transformer across accuracy, model size, 

latency, and energy on the Raspberry Pi 4. The QAE achieves 

the highest F1-score (98.7%) with minimal footprint (142 KB), 

lowest latency (1.8 ms), and least energy (4.2 mJ), 

outperforming heavier architectures despite its int8 

quantization. These results empirically validate that 

quantization-aware, reconstruction-based models offer the 

best trade-off for real-time, resource-constrained IoT intrusion 

detection. 

 Table 6: The performance matrix  

Model Accuracy (%) F1-Score (%) Model Size (KB) Inference Latency (ms) Energy per Inference (mJ) 

QAE (int8) 97.8 98.7 142 1.8 4.2 

Compact LSTM 96.4 97.1 210 3.5 6.8 

Tiny Transformer 97.1 97.9 380 7.2 12.1 

 

Experimental Results 

QAE excelled in detecting high-frequency attacks 

(DOS_SYN_Hping, F1=99.3%) but showed reduced 

sensitivity to rare events (Metasploit_SSH, F1=89.2%). 

LSTM achieved the best recall for low-frequency attacks 

(92.4% for SSH brute-force). 

Transformer demonstrated superior performance on 

NMAP_XMAS as well as  Slowloris due to long-sequence 

modeling. 

On Raspberry Pi 4, QAE processed 550 flows/sec sufficient 

for real-time edge filtering. 

 

                                                                 Figure 2: Class distribution dataset 
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This study presents a hardware-aware benchmark of quantized 

autoencoders, compact LSTMs, and lightweight Transformers 

for anomaly detection on the RT-IoT2022 dataset, evaluated 

on a Raspberry Pi 4 under real edge constraints. Results show 

the quantized autoencoder achieves the best trade-off 98.7% 

F1-score, 1.8 ms latency, 142 KB size, and 4.2 mJ energy 

demonstrating that intelligently compressed models can 

outperform complex architectures in deployable edge security. 

Figure 3’s Pearson correlation heatmap of the top 15 RT-

IoT2022 features reveals both redundant, for instance, 

fwd_pkts_tot and bwd_pkts_tot; and orthogonal, for instance, 

flow_duration and down_up_ratio; relationships, guiding 

efficient feature selection for lightweight edge models. These 

insights support dimensionality reduction without significant 

information loss while enhancing discriminative power and 

model interpretability under resource constraints.

 

                                         Figure 3: Feature Correlation Heatmap (Top 15 Numerical Features) 

 

 
                                     Figure 4:  t-SNE Visualization of Latent Space (Simulated QAE Embedding 
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Figure 4’s t-SNE visualization of the QAE’s latent space 

shows clear separation between attack types and cohesive 

intra-class groupings, confirming the model’s ability to 

preserve discriminative features despite aggressive 

quantization. The absence of distinct benign clusters aligns 

with the unsupervised anomaly detection paradigm, where 

deviations from normal behavior not precise class boundaries 

drive detection, validating the QAE’s suitability for edge-

based IoT security. 

 
                                                          Figure 5: Model Performance Comparison 

 

Figure 5 highlights the latency–accuracy trade-off among 

edge-optimized models, showing the QAE achieves the 

highest F1-score (98.7%) with the lowest latency (1.8 ms), 

making it ideal for real-time IoT security. The Lightweight 

Transformer and Compact LSTM lag behind due to higher 

latency (7.2 ms and 3.5 ms, respectively), underscoring the 

QAE’s superiority in resource-constrained deployments. 

 

Figure 6: Confusion Matrix (Top 5 Classes) which is associated with QAE Performance 
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Figure 6 shows the QAE achieves near-perfect classification 

for dominant classes like MQTT and DOS_SYN_Hping with 

zero misclassifications, and minimal confusion for 

ARP_poisoning, reflecting strong intra-class coherence. It 

produces no false positives among benign traffic, confirming 

high specificity and suitability for low-noise, real-world edge 

deployments under class imbalance. 

 

 

Figure 7: Performance comparison of deep learning models on RT-IoT2022 under edge optimized deployment constraints 

 

Figure 7 demonstrates that the QAE (int8) achieves near-

optimal detection performance with minimal resource use 142 

KB, 1.8 ms latency, and 4.2 mJ per inference making it ideal 

for edge IoT deployments. In contrast, the Tiny Transformer 

and Compact LSTM incur higher computational costs without 

meaningful accuracy gains, underscoring the necessity of 

quantization-aware design for real-time, energy-constrained 

environments. 

 

Figure 8: Top 20 Most Discriminative Features (ANOVA F-Score) 
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Figure 8 shows that bwd_URG_flag_count exhibits the highest 

discriminative power among RT-IoT2022 features based on 

ANOVA F-scores, underscoring the value of TCP control flags 

in lightweight anomaly detection. Additional low-level 

features, for instance, forward payload minima and initial 

window sizes further enable accurate, resource-efficient threat 

identification without deep packet inspection. 

 
                                                           Figure 9: Per-Class Precision-Recall Curves (for QAE) 

 

Figure 9 shows that the QAE achieves near-perfect average 

precision (AP = 0.99) for high-frequency attacks like 

DOS_SYN_Hping, while struggling with rare or stealthy 

threats such as DDOS_Slowloris and 

Metasploit_Brute_Force_SSH (low AP), highlighting the 

challenge of class imbalance in edge-based detection. The 

sharp drop in precision at higher recall levels underscores the 

need for class-specific tuning or hybrid approaches to enhance 

sensitivity to critical but infrequent attacks. 

 

 

Figure 10: Model performance Size vs. Accuracy Trade-off 

 

Figure 10 shows the QAE achieves the highest classification 

accuracy (97.8%) among edge-optimized models on RT-

IoT2022 outperforming the Lightweight Transformer (97.1%) 

and Compact LSTM (96.4%) despite its int8 quantization and 

minimal footprint. In addition, this demonstrates that 

reconstruction-based anomaly detection can effectively 

capture subtle traffic anomalies, affirming quantization-aware, 

lightweight designs as viable for accurate, efficient edge-

native intrusion detection. 

Figure 11 shows the QAE consistently matches or exceeds 

LSTM and Transformer in per-attack F1-scores especially on 

high-frequency attacks like DOS_SYN_Hping and 

DDOS_Slowloris despite its unsupervised, non-sequential 

design. In addition, this underscores that, under edge 

constraints, model simplicity, speed, and efficiency are more 

critical than architectural complexity for real-time IoT 

intrusion detection. 

Discussion  
This research experimental programming evaluation 

demonstrates that a quantized autoencoder (QAE) achieves the 

highest F1-score (98.7%) while maintaining the lowest 

inference latency (1.8 ms), smallest model footprint (142 KB), 

and minimal energy consumption (4.2 mJ) on a Raspberry Pi 

4 outperforming both a compact LSTM and a lightweight 

Transformer across all efficiency metrics without sacrificing 

detection fidelity (Table 5). This confirms that, under strict 

edge constraints, reconstruction-based anomaly detection 

combined with post-training quantization can surpass 

sequential or attention-based models in practical deployability 

a finding consistent with recent work on hardware-aware 

model compression [1,26,30]. The QAE excels in detecting 

high-frequency attacks such as DOS_SYN_Hping (F1 = 

99.3%), reflecting its ability to learn a robust representation of 

dominant benign traffic during unsupervised training; 

deviations from this manifold are  
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                                                      Figure 11: Attack-Wise F1-Score Comparison 

Table 7: Clarification of this research novelty system-Level benchmarking contributions 

Aspect Prior Work This Work 

Model Scope Sharmila & Nagapadma (2023) [1] proposed a QAE 

for RT-IoT2022, but did not compare against LSTM 

or Transformer baselines. Other studies focus on 

single architectures, for instance, Otokwala et al., 

2024 [4]; Fares et al., 2025 [5]. 

First unified benchmark comparing quantized autoencoder 

(QAE), compact LSTM, and lightweight Transformer on the 

same dataset under identical edge constraints addressing the 

gap noted by the reviewer regarding novelty framing. 

Evaluation 

Metrics 

Most prior works report only accuracy or F1-score 

[1,4,18]. Energy and latency are rarely measured on 

real hardware. 

Holistic system-level evaluation: F1-score + inference latency 

+ model footprint + energy consumption per inference on real 

Raspberry Pi 4 hardware aligning with edge deployment 

realities emphasized in Zeeshan (2024) [26] and Khan (2024) 

[29]. 

Deployment 

Context 

Simulated environments or cloud-centric evaluations 

dominate  [5,6]; few validate on commodity edge 

devices. [21] 

Empirical deployment on Raspberry Pi 4 with strict 

constraints (<500 KB, <10 ms, <15 mJ), reflecting 

operational limits of real-world IoT gateways [29,30]. 

Key Insight Assumption that architectural complexity 

(Transformers) improves detection [5,27]. 

Demonstrates that intelligently compressed, reconstruction-

based models (QAE) can outperform complex 

sequential/attention-based models in real-world edge 

scenarios supporting the paradigm shift toward minimal 

sufficiency. 

Reproducibility Limited public release of edge-optimized models or 

inference scripts 

Open-source release of int8 QAE, pruned LSTM, and distilled 

Transformer weights, preprocessing code, and Raspberry Pi 

inference scripts enhancing reproducibility as recommended 

in best practices for Edge AI [26, 29, 37]. 

 

reliably flagged as anomalies. Conversely, its reduced 

sensitivity to rare attacks like Metasploit_Brute_Force_SSH 

(F1 = 89.2%) stems from severe class imbalance in RT-

IoT2022 (Figure 1), not an architectural limitation a constraint 

also noted in prior studies using this dataset [1,18]. This aligns 

with the well-established challenge in unsupervised anomaly 

detection: performance degrades when anomalous samples are 

scarce or stealthy [17,22]. 

The QAE produces zero false positives among benign classes 

(MQTT, Amazon-Alexa, ThingSpeak), confirming high 

specificity critical for low-noise edge deployments where alert 

fatigue must be avoided [29]. The t-SNE visualization (Figure 

4) further validates that the QAE preserves discriminative 

structure despite aggressive int8 quantization, with clear inter-

class separation and intra-class cohesion among attack types, 

while benign traffic remains unclustered as expected in 

unsupervised anomaly scoring [1,14]. Energy efficiency 

emerges as a decisive advantage: at 4.2 mJ per inference, the 

QAE consumes less than one-third the energy of the 

Transformer (12.1 mJ), directly impacting battery longevity in 

large-scale IoT deployments such as smart factories or rural 

sensor networks [23,24]. This empirical result underscores a 

key insight from Edge AI literature: computational efficiency 

often outweighs representational depth in real-world edge 

scenarios [26,30]. While the LSTM shows superior recall on 

low-frequency attacks, for instance, 92.4% for SSH brute-

force, and the Transformer better captures long-range 

dependencies in scans like NMAP_XMAS, their higher 

latency (3.5–7.2 ms) and memory demands (210–380 KB) 

limit viability on sub-500 MHz ARM SoCs [28,29,30,34,35]. 

These trade-offs suggest potential for hybrid architectures , for 

instance,  QAE for primary filtering, followed by LSTM 

analysis of ambiguous flows as proposed in [1,9]. This 

research study  benchmark provides empirical evidence that 

quantization-aware, reconstruction-based models offer the 

best balance of accuracy, speed, size, and energy for 
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standalone edge IDS. This supports a shift toward co-

designing models with deployment constraints not merely 

optimizing predictive power consistent with emerging best 

practices in TinyML and Edge AI [26,30, 37, 38]. 
Limitations and Future Research 
This study is limited via its reliance on precomputed network 
features that prevent genuine end-to-end edge deployment and 
its use on the RT-IoT2022 dataset, which might not accurately 
reflect real-world IoT dynamics or zero-day threats. Although 
effective, the unsupervised QAE's forensic utility is limited via 
its inability to classify particular assault types, which is 
associated with its resilience to adaptive adversarial 
perturbations is still unknown. Future research will incorporate 
lightweight online feature extraction, create hybrid models for 
classifying few-shot attacks, and verify results on IoT testbeds 
used in industry also healthcare. To co-optimize model 
structure and quantization under stringent hardware 
constraints [37], energy-aware neural architecture search (E-
NAS) will also be investigated. These advancements aim to 
bridge the gap between benchmark validation as well as real-
world, resilient edge security [17,32]. 

Conclusion 
This study uses the RT-IoT2022 dataset to create a baseline for 

edge-deployable deep learning models. Under severe resource 

limitations, the quantized autoencoder proves to be the most 

practical option for low-latency, high-accuracy anomaly 

detection, while LSTM and Transformer variations provide 

complementing capabilities for particular attack profiles. In 

next-generation IoT security frameworks, this research results 

highlight the need for co-designing models as well as 

deployment goals. 
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